【總結(jié)】......2014年中考數(shù)學(xué)沖刺復(fù)習(xí)資料:二次函數(shù)壓軸題面積類1.如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn).(1)求拋物線的解析式.(2)點(diǎn)M是線段BC上的點(diǎn)(不與B,C重合),過M
2025-04-04 03:45
【總結(jié)】與2017年中考數(shù)學(xué)沖刺復(fù)習(xí)資料:二次函數(shù)壓軸題面積類1.如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn).(1)求拋物線的解析式.(2)點(diǎn)M是線段BC上的點(diǎn)(不與B,C重合),過M作MN∥y軸交拋物線于N,若點(diǎn)M的橫坐標(biāo)為m,請(qǐng)用m的代數(shù)式表示MN的長(zhǎng).(3)在(2)的條件下,連接NB、NC,是否存在m,使△BNC的面積最大?若存在,求m的值;若
2025-07-23 00:16
【總結(jié)】......最短路徑問題——和最小【方法說明】“和最小”問題常見的問法是,在一條直線上面找一點(diǎn),使得這個(gè)點(diǎn)與兩個(gè)定點(diǎn)距離的和最?。▽④婏嬹R問題).如圖所示,在直線l上找一點(diǎn)P使得PA+PB最?。?dāng)點(diǎn)P為直線AB′與直線l的交點(diǎn)時(shí),PA+P
2025-03-26 23:36
【總結(jié)】一.解答題(共5小題)例1.(2013?河南)如圖,拋物線y=﹣x2+bx+c與直線y=x+2交于C、D兩點(diǎn),其中點(diǎn)C在y軸上,點(diǎn)D的坐標(biāo)為(3,).點(diǎn)P是y軸右側(cè)的拋物線上一動(dòng)點(diǎn),過點(diǎn)P作PE⊥x軸于點(diǎn)E,交CD于點(diǎn)F.(1)求拋物線的解析式;(2)若點(diǎn)P的橫坐標(biāo)為m,當(dāng)m為何值時(shí),以O(shè)、C、P、F為頂點(diǎn)的四邊形是平行四邊形?請(qǐng)說明理由.(3)若存在點(diǎn)P,使∠PCF=45
2025-03-24 06:24
【總結(jié)】中考二次函數(shù)專題復(fù)習(xí)教師寄語:二次函數(shù)這一章在初中數(shù)學(xué)中占有重要地位,,二次函數(shù)在中考命題中一直是“重頭戲”,根據(jù)對(duì)近幾年中考試卷的分析,預(yù)計(jì)今年中考中對(duì)二次函數(shù)的考查題型有低檔的填空題、選擇題,中高檔的解答題,分值一般為9~15分,除考查定義、識(shí)圖、性質(zhì)、求解析式等常規(guī)題外,還會(huì)出現(xiàn)與二次函數(shù)有關(guān)的貼近生活實(shí)際的應(yīng)用題,閱讀理解題和探究題,二次函數(shù)與其他函數(shù)方程、不等式、幾何知識(shí)的綜合在壓
2025-04-16 12:57
【總結(jié)】1二次函數(shù)知識(shí)點(diǎn)總結(jié)及相關(guān)典型題目第一部分二次函數(shù)基礎(chǔ)知識(shí)?相關(guān)概念及定義?二次函數(shù)的概念:一般地,形如2yaxbxc???(abc,,是常數(shù),0a?)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)0a?,而bc,可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).?二次函數(shù)2yaxbx
2024-10-19 10:07
【總結(jié)】OxyABCD一基礎(chǔ)構(gòu)圖:y=(以下幾種分類的函數(shù)解析式就是這個(gè))★和最小,差最大在對(duì)稱軸上找一點(diǎn)P,使得PB+PC的和最小,求出P點(diǎn)坐標(biāo)在對(duì)稱軸上找一點(diǎn)P,使得PB-PC的差最大,求出P點(diǎn)坐標(biāo)OxyABCD★求面積最大連接AC,在第四象限找一
【總結(jié)】中考二次函數(shù)專題復(fù)習(xí)知識(shí)點(diǎn)歸納:一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號(hào)左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng).二、二次函數(shù)的基本形式1.
【總結(jié)】2019年中考數(shù)學(xué)分類匯編二次函數(shù)壓軸題1、如圖,在平面直角坐標(biāo)系xOy中,拋物線y=a(x+1)2﹣3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣),頂點(diǎn)為D,對(duì)稱軸與x軸交于點(diǎn)H,過點(diǎn)H的直線l交拋物線于P,Q兩點(diǎn),點(diǎn)Q在y軸的右側(cè).(1)求a的值及點(diǎn)A,B的坐標(biāo);(2)當(dāng)直線l將四邊形ABCD分為面積比為3:7的兩部分時(shí),求直線l的函數(shù)表達(dá)式;(3)當(dāng)點(diǎn)
2025-04-04 02:48
【總結(jié)】,如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(-2,0),點(diǎn)B坐標(biāo)為(0,2),點(diǎn)E為線段AB上的動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)A,B重合),以E為頂點(diǎn)作∠OET=45°,射線ET交線段OB于點(diǎn)F,C為y軸正半軸上一點(diǎn),且OC=AB,拋物線y=x2+mx+n的圖象經(jīng)過A,C兩點(diǎn).(1)求此拋物線的函數(shù)表達(dá)式;(2)求證:∠BEF=∠AOE;(3)當(dāng)△EOF為等腰三角形時(shí),求此時(shí)點(diǎn)E的
2025-08-17 05:09
【總結(jié)】已知:拋物線y=-x^2+2x+8交X軸于A、B兩點(diǎn)(A在B左側(cè)),O是坐標(biāo)原點(diǎn)。1、動(dòng)點(diǎn)P在X軸上方的拋物線上(P不與A、B重合),D是OP中點(diǎn),BD延長(zhǎng)線交AP于E問:在P點(diǎn)運(yùn)動(dòng)過程中,PE:PA是否是定值?是,求出其值;不是,請(qǐng)說明理由。2、在第1問的條件下,是否存在點(diǎn)P,使△PDE的面積等于1?若存在,求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由。解:=
2025-03-24 06:13
【總結(jié)】第二十五講二次函數(shù)的圖象與性質(zhì)(二)理一理:、性質(zhì)以及它們的圖象,進(jìn)行形與數(shù)、形與方程、形與不等式之間的相互轉(zhuǎn)換,是分析與解決函數(shù)問題的重要方法.△=0時(shí),拋物線y=ax2+bx+c(a≠0)與x軸有個(gè)交點(diǎn),一元二次方程ax2+bx+c=0有實(shí)根;當(dāng)△<0時(shí),拋物線y=ax2+bx+c(a≠0)與
2024-11-19 12:03
【總結(jié)】二次函數(shù) 評(píng)卷人得分一.解答題(共50小題)1.如圖,關(guān)于x的二次函數(shù)y=x2+bx+c的圖象與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,3),拋物線的對(duì)稱軸與x軸交于點(diǎn)D.(1)求二次函數(shù)的表達(dá)式;(2)在y軸上是否存在一點(diǎn)P,使△PBC為等腰三角形?若存在.請(qǐng)求出點(diǎn)P的坐標(biāo);(3)有一個(gè)點(diǎn)M從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度在
【總結(jié)】1第一部分二次函數(shù)基礎(chǔ)知識(shí)?相關(guān)概念及定義?二次函數(shù)的概念:一般地,形如2yaxbxc???(abc,,是常數(shù),0a?)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù)0a?,而bc,可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).?二次函數(shù)2yaxbxc???的結(jié)構(gòu)特征:⑴等
2024-10-20 20:45
【總結(jié)】第一篇:2017年中考數(shù)學(xué)二次函數(shù)壓軸題(含答案) 2017年中考數(shù)學(xué)沖刺復(fù)習(xí)資料:二次函數(shù)壓軸題 面積類 1.如圖,已知拋物線經(jīng)過點(diǎn)A(﹣1,0)、B(3,0)、C(0,3)三點(diǎn).(1)求拋物...
2024-10-25 13:28