【總結(jié)】平面解析幾何階段質(zhì)量檢測(cè)(時(shí)間120分鐘,滿分150分)第Ⅰ卷 (選擇題,共40分)一、選擇題(本大題共8題,每小題5分,共60分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.拋物線y2=ax(a≠0)的焦點(diǎn)到其準(zhǔn)線的距離是( )A. B.C.|a|
2025-04-04 04:27
【總結(jié)】第二章《解析幾何初步》檢測(cè)試題一、選擇題(本大題共12小題,每小題5分,共60分)1.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是()=0+1=0+y-2=0+2y-1=02.已知直線mx+ny+1=0平行于直線4x+3y+5=0,且在y軸上的截距為,則m,n的值分別為(
2025-03-25 02:03
【總結(jié)】解析幾何一、選擇題1.已知兩點(diǎn)A(-3,),B(,-1),則直線AB的斜率是( )A. B.-C. D.-解析:斜率k==-,故選D.答案:D2.已知直線l:ax+y-2-a=0在x軸和y軸上的截距相等,則a的值是( )A.1 B.-1C.-2或-1 D.-2或1解析:①當(dāng)a=0時(shí),y=2不合題意.②a≠0,x=0時(shí)
2025-08-05 16:26
【總結(jié)】第七章空間解析幾何與向量代數(shù)習(xí)題 (一)選擇題1.已知A(1,0,2),B(1,2,1)是空間兩點(diǎn),向量的模是:()A)B)C)6D)92.設(shè)a={1,-1,3},b={2,-1,2},求c=3a-2b是:()A){-1,1,5}.B){-1,-1,5
2025-08-05 16:46
【總結(jié)】平面解析幾何中的對(duì)稱問題李新林汕頭市第一中學(xué)515031對(duì)稱性是數(shù)學(xué)美的重要表現(xiàn)形式之一,在數(shù)學(xué)學(xué)科中對(duì)稱問題無處不在。在代數(shù)、三角中有對(duì)稱式問題;在立體幾何中有中對(duì)稱問題對(duì)稱體;在解析幾何中有圖象的對(duì)稱問題。深入地研究數(shù)學(xué)中的對(duì)稱問題有助于培養(yǎng)學(xué)生分析解決問題的能力,有助于提高學(xué)生的數(shù)學(xué)素質(zhì)。在平面解析幾何中,對(duì)稱問題的存在尤其普遍。平面解析幾何中的對(duì)稱問題在
2025-03-25 23:31
【總結(jié)】解析幾何一、直線與直線方程(一)直線的斜率與傾斜角1、直線傾斜角的定義當(dāng)直線l與x軸相交時(shí),取x軸作為基準(zhǔn),x軸正向與直線l向上方向之間所成的角α叫做直線l的傾斜角;特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0°。直線傾斜角的范圍:0°≤α180°2、直線斜率的定義當(dāng)直線的傾斜角不為90°時(shí),直線傾斜角
2025-06-29 12:53
【總結(jié)】第一部分:直線-1-直線學(xué)習(xí)內(nèi)容要點(diǎn)記錄一、斜率與傾斜角(Ⅰ)有關(guān)傾斜角1.傾斜角的概念:(1)在平面直角坐標(biāo)系中,對(duì)于一條與x軸相交的直線,把x軸繞著交點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)到與直線
2025-01-09 11:04
【總結(jié)】解析幾何中的基本公式1、兩點(diǎn)間距離:若,則特別地:軸,則。軸,則。2、平行線間距離:若則:注意點(diǎn):x,y對(duì)應(yīng)項(xiàng)系數(shù)應(yīng)相等。3、
2025-04-17 12:52
【總結(jié)】精品資源蘇州部分四星級(jí)中學(xué)高三復(fù)習(xí)內(nèi)部資料____解析幾何高考第一問訓(xùn)練(第一課時(shí))高考解答題中解析幾何是在第二問中加大區(qū)分度的,因此第一問的訓(xùn)練對(duì)于普通學(xué)校來說還是非常重要的,而第一問??疾閯?dòng)點(diǎn)的軌跡,求直線方程,圓錐曲線方程中的基本量,近年來,又加入了向量,但只是考察向量知識(shí)為主,以向量方法去做題在第一問中考查的還不多。例一.(2004.遼寧卷)(本小題滿分12分)設(shè)
2025-06-18 00:31
【總結(jié)】“解析幾何”一網(wǎng)打盡(一)直線1.(1)點(diǎn)斜式(直線過點(diǎn),且斜率為).(2)斜截式(b為直線在y軸上的截距).(3)一般式(其中A、B不同時(shí)為0).特別的:(1)已知直線縱截距,常設(shè)其方程為或;已知直線橫截距,常設(shè)其方程為(直線斜率k存在時(shí),為k的倒數(shù)),常設(shè)其方程為或(2)直線在坐標(biāo)軸上的截距可正、可負(fù)、也可為0.直線兩截距相等
2025-06-18 20:19
【總結(jié)】解析幾何中的最值問題一、教學(xué)目標(biāo)解析幾何中的最值問題以直線或圓錐曲線作為背景,以函數(shù)和不等式等知識(shí)作為工具,具有較強(qiáng)的綜合性,這類問題的解決沒有固定的模式,其解法一般靈活多樣,且對(duì)于解題者有著相當(dāng)高的能力要求,正基于此,這類問題近年來成為了數(shù)學(xué)高考中的難關(guān)。二、教學(xué)重點(diǎn)方法的靈活應(yīng)用。三、教學(xué)程序1、基礎(chǔ)知識(shí)。探求解析幾何最值的方法有以下幾種。⑴函數(shù)法
2025-09-25 16:15
2025-09-25 15:52
【總結(jié)】解析幾何題型求參數(shù)的值是高考題中的常見題型之一,其解法為從曲線的性質(zhì)入手,構(gòu)造方程解之.例1.若拋物線的焦點(diǎn)與橢圓的右焦點(diǎn)重合,則的值為()A.B.C.D.考查意圖:本題主要考查拋物線、橢圓的標(biāo)準(zhǔn)方程和拋物線、橢圓的基本幾何性質(zhì).解答過程:橢圓的右焦點(diǎn)為(2,0),所以拋物線的焦點(diǎn)為(2,0),則
2025-08-05 16:59
【總結(jié)】解析幾何中的定值問題1、(2014安徽高考)如圖,已知兩條拋物線,過點(diǎn)的三條直線、和.與和分別交于兩點(diǎn),與和分別交于,與和分別交于.記的面積分別為與,求證的值為定值.證明:設(shè)直線的方程分別為.把直線與拋物線聯(lián)立求解得:,,.由三角形三頂點(diǎn)坐標(biāo)面積公式得:,,所以=為定值.注:(1)設(shè)?ABC三頂點(diǎn)的坐標(biāo)分別為,則;(2)原解答包含
2025-08-05 16:44
【總結(jié)】一、直線與方程基礎(chǔ):1、直線的傾斜角:αα 2、直線的斜率:;注意:傾斜角為90°的直線的斜率不存在。3、直線方程的五種形式:①點(diǎn)斜式:;②斜截式:;③一般式:;④截距式:;⑤兩點(diǎn)式:注意:各種形式的直線方程所能表示和不能表示的直線。4、兩直線平行與垂直的充要條件:,,;.5、相關(guān)公式:
2025-04-17 12:34