【總結(jié)】第九單元不等式的證明.(1)已知,那么下列命題中正確的是 () A.若,則 B.若,則C.若,則 D.若,則(2)設a1,0b1,則的取值范圍為 ()A. B. C. D.(3)設x>0,P=2x+2-x,Q=(sinx+cosx)2,則 ()A.P≥Q
2025-04-17 05:30
【總結(jié)】初一數(shù)學不等式與不等式組 中考數(shù)學:不等式與不等式組 1不等式的概念、性質(zhì)及解集的表示1、不等式一般地,用符號“”(或“≥”)以及“≠”連接的式子叫做不等式。能使不等式成立的未知數(shù)的值...
2024-12-03 22:28
【總結(jié)】......1.(2018?卷Ⅱ)設函數(shù)f(x)=5-|x+a|-|x-2|(1)???當a=1時,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范圍
2025-04-17 01:45
【總結(jié)】不等式公式匯總一不等式的證明證明不等式選擇方法的程序:①做差:證明不等式首選不等式,做差的本質(zhì)是因式分解,能否使用做差法取決于做差后能否因式分解;②作比:通過構造同底或同指數(shù)合并作比結(jié)果,再利用指對數(shù)圖像判斷大于小于1;③用公式:構造公式形式;等價變形:左右兩邊n次方;平方平均≥算術平均≥幾何平均≥調(diào)和平均(a、b為正數(shù)):(當a=b時取等),,
2025-04-17 13:09
【總結(jié)】排序不等式問題探究A1A2AiAnB1B2BiBnOAB問題探究12121122,,,,.nnnncccbbbSacacac???設是數(shù)組的任何一個排列何時取得最大值1211121321
2025-11-03 01:35
【總結(jié)】第七章不等式第七章第一節(jié)不等關系與不等式高考目標導航課前自主導學課堂典例講練3課后強化作業(yè)4高考目標導航考綱要求命題分析1.了解現(xiàn)實世界和日常生活中的不等關系.2.了解不等式(組)的實際背景.3.了解證明不等式的基本方法——比較法.從近三
2024-11-19 06:54
【總結(jié)】第9課不等式與不等式組1.定義:(1)用連接起來的式子叫做不等式;(2)使不等式成立的未知數(shù)的值叫做;(3)一個含有未知數(shù)的不等式的解的全體,叫做;(4)求不等式的解集的過程或證明不等式無解的過程,叫做解不等式.
2025-08-05 00:56
【總結(jié)】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【總結(jié)】第八講不等式與不等式組一、知識網(wǎng)絡結(jié)構圖二、考點精析考點一:不等式基本性質(zhì)運用1.由x0D.a2,則a的取值范圍是( ?。〢.a(chǎn)0B.aC.a&l
2025-04-16 12:51
【總結(jié)】不等式與不等式組教材分析本章的主要內(nèi)容包括:一元一次不等式(組)及其相關概念,不等式的性質(zhì),一元一次不等式(組)的解法及其解集的幾何表示,利用一元一次不等式(組)分析與解決實際問題.其中,以不等式(組)為工具分析問題、解決問題是重點,也是教學中的主要難點;一元一次不等式(組)及其相關概念、不等式的性質(zhì)是基礎知識;掌握一元一次不等式(組)的解法及解集
2025-07-18 00:29
【總結(jié)】解不等式方程的方法:(1)設:弄清題意和題目中的數(shù)量關系,用字母(x、y)表示題目中的未知數(shù);(2)找:找到能夠表示應用題全部含義的一個不等的關系;(3)列:根據(jù)這個不等的數(shù)量關系,列出所需的代數(shù)式,從而列出不等式(組);(4)解:解這個所列出的不等式(組),求出未知數(shù)的解集;(5)答:寫出答案,出售時標價為1200元,后來由于商品積壓,商店準備打折出售但要保持利
2025-08-17 07:18
【總結(jié)】指數(shù)不等式、對數(shù)不等式的解法·例題?例5-3-7?解不等式:解?(1)原不等式可化為x2-2x-1<2(指數(shù)函數(shù)的單調(diào)性)x2-2x-3<0(x+1)(x-3)<0所以原不等式的解為-1<x<3。(2)原不等式可化為注?函數(shù)的單調(diào)性是解指數(shù)不等式、對數(shù)不等式的重要依據(jù)。例5-
2025-06-25 01:24
【總結(jié)】初二數(shù)學不等式解下列不等式:(1)x-17<-5;(2)>-3;(3)>11;(4)>.(5)3x+1>4;(6)3-x-1;(7)2(x+1)3x;(8)3(x
2025-03-25 07:46
【總結(jié)】第一篇:高一不等式解法及放縮法證明練習 不等式 1.設a,b,c,d是任意正數(shù),求證:1 2.已知x,y,z 3.求證:-1)1+ 4.已知a,b,c?R,求證:a+b+c3ab+bc+...
2025-10-19 09:51