【總結】應用舉例解決有關測量距離的問題1、正弦定理:2、余弦定理:二、應用:一、定理內(nèi)容:求三角形中的某些元素解三角形實例講解分析:在本題中直接給出了數(shù)學模型(三角形),要求A、B間距離,相當于在三角形中求某一邊長?想一想例1、如下圖,設A、B兩點在河的兩岸,要測量兩點之間的距離
2024-11-10 22:29
【總結】第一篇:《正弦定理和余弦定理》教學反思 《正弦定理、余弦定理》教學反思 我對教學所持的觀念是:數(shù)學學習的主要目的是:“在掌握知識的同時,領悟由其內(nèi)容反映出來的數(shù)學思想方法,要在思維能力、情感態(tài)度與...
2024-10-03 14:50
【總結】第一篇:正弦定理與余弦定理的證明 在△ABC中,角A、B、C所對的邊分別為a、b、c,則有 a/sinA=b/sinB=c/sinC=2R(R為三角形外接圓的半徑) 正弦定理(Sinetheor...
2024-10-06 06:34
【總結】第一篇:余弦定理在生活應用 余弦定理在生活應用 ———感想 學校每年都會組織一次各科的課題研究,可以讓我們學生在開放的學習情境中主動探索,親身體驗,在愉快的心情中自主學習,提高能力,同時我們可以...
2024-10-02 11:10
【總結】正弦定理和余弦定理的應用知識點:1、正弦定理:.2、正弦定理的變形公式:①,,;②,,;③;④.3、三角形面積公式:.4、余弦定理:在中,有,,.5、余弦定理的推論:,,.6、設、、是的角、、的對邊,則:①若,則;②若,則;③若,則.典型例題:解:,由正弦定理得答:(略)1、如圖,設A,B兩點在河的兩岸,一測量者在A點的同側,在A所在的河岸邊選
2025-06-28 05:52
【總結】正弦定理、余弦定理的綜合應用正余弦定理的應用1、(1)在△ABC中,已知a,b,c分別為內(nèi)角A,B,C的對邊,若b=2a,B=A+600,則A=______(2)在△ABC中,若B=300,AB=32,AC=
2025-08-11 12:29
【總結】【成才之路】2021年春高中數(shù)學第2章解三角形1正弦定理與余弦定理第2課時余弦定理同步練習北師大版必修5一、選擇題1.(2021·煙臺高二檢測)在△ABC中,角A,B,C所對的邊分別為a,b,c,且a2=b2-c2+2ac,則角B的大小是()A.45°
2024-12-05 06:40
2024-11-09 13:04
【總結】§正弦定理和余弦定理要點梳理:,其中R是三角形外接圓的半徑.由正弦定理可以變形為:(1)a∶b∶c=sinA∶sinB∶sinC;(2)a=2RsinA,b=2RsinB,;(3)等
2025-07-25 10:59
【總結】12直角三角形中的邊角關系:CBAabc1、角的關系:A+B+C=180°A+B=C=90°2、邊的關系:a2+b2=c23、邊角關系:sinA=—=cosBsinB=—=cosAacbc復習3CBAabc
2025-05-06 01:08
【總結】《余弦定理》說課稿南海藝術高級中學胡輝一.教材分析1.地位及作用“余弦定理”是人教A版數(shù)學必修5主要內(nèi)容之一,是解決有關斜三角形問題的兩個重要定理之一,也是初中“勾股定理”內(nèi)容的直接延拓,它是三角函數(shù)一般知識和平面向量知識在三角形中的具體運用,是解可轉化為三角形計算問題的其它數(shù)學問題及生產(chǎn)、生活實際問題的重要工具具有廣泛的應用價值,起到承上啟下的作用。2.課時安排
2025-04-16 22:53
【總結】《正弦定理和余弦定理》典型例題透析類型一:正弦定理的應用:例1.已知在中,,,,解三角形.思路點撥:先將已知條件表示在示意圖形上(如圖),可以確定先用正弦定理求出邊,然后用三角形內(nèi)角和求出角,最后用正弦定理求出邊.解析:,∴,∴,又,∴.總結升華:1.正弦定理可以用于解決已知兩角和一邊求另兩邊和一角的問題;2.數(shù)形結合將已知條件表示在示
2025-03-25 04:59
【總結】第一篇:例談正弦定理、余弦定理的應用 龍源期刊網(wǎng)://. 例談正弦定理、余弦定理的應用 作者:姜如軍 來源:《理科考試研究·高中》2013年第08期 答:km/h,實際行駛方向與水流方向約成...
2024-10-03 18:48
2025-08-16 02:23
【總結】正、余弦定理練習題基本運算類1、中,則等于()ABC?45,60,1,Ba????bABCD22063562、在△ABC中,已知,B=,C=,則等于8?a0675bA.B.C.
2025-03-24 07:02