【總結】立體幾何重要定理:1)直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這兩條直線垂直于這個平面.2)直線和平面平行性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行.3)平面平行判定定理:如果一個平面內有兩條
2024-12-17 02:37
【總結】12020-2020年各省市立體幾何高考題選編(文數(shù))富源縣第六中學秦慶輝一、選擇題,正視圖和俯視圖如右圖所示,則相應的側視圖可以為(),網格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為()(A)6(B)9(C)12(D)18
2025-11-15 20:51
【總結】第一篇:立體幾何題證明方法 立體幾何題型與方法 1.平面的基本性質:掌握三個公理及推論,會說明共點、共線、共面問題。 (1)證明點共線的問題,一般轉化為證明這些點是某兩個平面的公共點(依據(jù):由點...
2025-11-06 05:28
【總結】2009高考數(shù)學解答題專題攻略----立體幾何09高考立體幾何分析與預測:立體幾何是高中數(shù)學中的重要內容,也是高考的熱點內容。該部分新增加了三視圖,對三視圖的考查應引起格外的注意。立體幾何在高考解答題中,常以空間幾何體(柱,錐,臺)為背景,考查幾何元素之間的位置關系。另外還應注意非標準圖形的識別、三視圖的運用、圖形的翻折、求體積時的割補思想等,以及把運動的思想引進立體幾何。最近幾年綜合分
2025-01-15 10:22
【總結】三視圖問題分類解答例1、概念問題1、下列幾何體各自的三視圖中,有且僅有兩個視圖相同的是.(填序號)2、如圖,折線表示嵌在玻璃正方體內的一根鐵絲,請把它的三視圖補充完整.3、已知某個幾何體的三視圖如下圖所示,試根據(jù)圖中所標出的尺寸(單位:㎝),可得這個幾何體的體積是.4、已知某個幾何體的三視圖如下圖所示,試根據(jù)圖中
2025-06-07 21:09
【總結】立體幾何中的解題技巧(一)有關點共線、點共面、面共線問題【例1】已知D、E、F分別是三棱錐S-ABC的側棱SA、SB、SC上的點,且直線FD與CA交于M,F(xiàn)E與CB交于N,DE與AB交于P,求證:M、N、P三點必共線.點撥:證明若干個點共線的重要方法之一,是證明這些點分別是某兩個平面的公共點.
2025-01-06 20:06
【總結】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2025-11-03 12:11
【總結】高中數(shù)學《必修2》知識點版權所有王子安第一章空間幾何體一、常見幾何體的定義能說出棱柱、棱錐、棱臺、圓柱、圓錐、圓臺、球的定義和性質。二、常見幾何體的面積、體積公式1.圓柱:側面積(其中是底面周長,是底面半徑,是圓柱的母線,也是
2025-04-04 05:10
【總結】1.(2009北京卷)(本小題共14分)如圖,四棱錐的底面是正方形,,點E在棱PB上.(Ⅰ)求證:平面;(Ⅱ)當且E為PB的中點時,求AE與平面PDB所成的角的大小.解:如圖,以D為原點建立空間直角坐標系,設則,(Ⅰ)∵,∴,∴AC⊥DP,AC⊥DB,∴AC⊥平面PDB,∴平面.(Ⅱ)當且E為PB的中點時,,
2025-08-05 10:17
【總結】一輪復習之立體幾何姓名一輪復習之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-07-24 12:16
【總結】高一立體幾何平行、垂直解答題精選1.已知直三棱柱ABC-A1B1C1,點N在AC上且CN=3AN,點M,P,Q分別是AA1,A1B1,:直線PQ∥平面BMN.2.如圖,在正方形ABCD-A1B1C1D1中,E,F(xiàn),M分別是棱B1C1,BB1,C1D1的中點,是否存在過點E,M且與平面A1FC平行的平面?若存在,請作出并證明;若不存在,請說明理由
2025-03-26 05:39
【總結】第六講立體幾何新題型【考點透視】(A),對于異面直線的距離,、直線和平面所成的角、、二面角的平面角、兩個平行平面間的距離的概念.(B)版.①理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.②了解空間向量的基本定理,理解空間向量坐標的概念,掌握空間向量的坐標運算.③掌握空間向量的數(shù)量積的定義及其性質,掌握用直角坐標計算空間向量數(shù)量積公式.④理解直線的方向向量
2025-08-05 18:17
【總結】第一篇:立體幾何方法總結 一、線線平行: 用: 1、平幾(如:同位角、內錯角相等;常用分線段比值相等); 2、證線 線平行(公理4); 3、證線面平行; 4、求異面直線所成角。 證: ...
2025-11-03 18:00
【總結】立體幾何基礎題題庫二(有詳細答案)361.有一個三棱錐和一個四棱錐,棱長都相等,將它們一個側面重疊后,還有幾個暴露面?解析:有5個暴露面.如圖所示,過V作VS′∥AB,則四邊形S′ABV為平行四邊形,有∠S′VA=∠VAB=60°,從而ΔS′VA為等邊三角形,同理ΔS′VD也是等邊三角形,從而ΔS′AD也是等邊三角形,得到以ΔVAD為底,以S′與S重合.這
2025-09-25 16:00
【總結】華夏學校資料庫1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。2、如圖,已知空間四邊形中,,是的中點。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-04 05:14