【總結(jié)】1北師大版高中數(shù)學選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2如圖,設i,j,k是空間三個兩兩垂直的向量,且有公共起點O。對于空間任意一個向量p=OP,設點Q為點P在i,j所確定的平面上的正投影,由平面基本定理可知,在OQ,k所確定的平面上,存在實數(shù)z,使得OP=OQ
2025-11-09 13:29
【總結(jié)】第二章§2理解教材新知把握熱點考向應用創(chuàng)新演練知識點一知識點二考點一考點二考點三知識點三在射擊時,為保證準確命中目標,要考慮風速、溫度等因素.其中風速對射擊的精準度影響最大.如某人向正北100m遠處的目標射擊,風速為西風1m/s.
2025-11-08 19:02
【總結(jié)】課題空間向量的運算(一)學習目標:知識與技能:1、熟練掌握空間向量的加法、減法、數(shù)乘及其數(shù)量積運算.2、能用空間向量的運算律解決簡單的立體幾何中的問題.過程與方法:經(jīng)歷向量運算平面到空間推廣的過程,進一步掌握類比的數(shù)學思想方法.情感態(tài)度與價值觀:學會用發(fā)展的眼光看問題,認識事物是在不斷發(fā)展變化的,會用聯(lián)系的觀點看
2025-11-24 00:16
【總結(jié)】課題:空間向量的運算(二)學習目標:知識與技能:1、熟練掌握空間向量的數(shù)量積運算.2、能用空間向量的運算律解決簡單的立體幾何中的問題過程與方法:經(jīng)歷向量運算平面到空間推廣的過程,進一步掌握類比的數(shù)學思想方法.情感態(tài)度與價值觀:學會用發(fā)展的眼光看問題,認識事物是在不斷發(fā)展變化的,會用聯(lián)系的觀點看待問題。
2025-11-09 18:59
【總結(jié)】第一課時:§立體幾何中的向量方法(一)教學要求:向量運算在幾何證明與計算中的應用.掌握利用向量運算解幾何題的方法,并能解簡單的立體幾何問題.教學重點:向量運算在幾何證明與計算中的應用.教學難點:向量運算在幾何證明與計算中的應用教學過程:一、復習引入1.用向量解決立體幾何中的一些典型問題的基本思考方法是:⑴
2025-11-21 04:03
【總結(jié)】高中新課標數(shù)學選修(2-1)《空間向量與立體幾何》測試題一、選擇題1.空間的一個基底??,,abc所確定平面的個數(shù)為()A.1個B.2個C.3個D.4個以上答案:2.已知(121)A?,,關(guān)于面xOy的對稱點為B,而B關(guān)于x軸的對稱點為C,則BC?(
2025-11-06 13:15
【總結(jié)】第一章一、選擇題1.下列命題中全稱命題的個數(shù)為()①平行四邊形的對角線互相平分;②梯形有兩邊平行;③存在一個菱形,它的四條邊不相等.A.0B.1C.2D.3[答案]C[解析]①②是全稱命題,③是特稱命題.2.下列命題:(1)至少有一個x,使x2
【總結(jié)】空間“綜合”問題向量法解立體幾何問題的優(yōu)點:1.思路容易找,甚至可以公式化;一般充分結(jié)合圖形發(fā)現(xiàn)向量關(guān)系或者求出(找出)平面的法向量、直線的方向向量,利用這些向量借助向量運算就可以解決問題.2.不需要添輔助線和進行困難的幾何證明;3.若坐標系容易建立,更是水到渠成.復習引入如圖,已知:
2025-11-09 12:14
【總結(jié)】ZPZ空間“角度”問題設直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復習引入①方向向量法將二面角轉(zhuǎn)化為二面角的兩個面的
2025-11-08 12:02
【總結(jié)】ZPZ空間“距離”問題一、復習引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運算結(jié)果“翻譯”成相應的幾何意義。(化為向量
【總結(jié)】平面向量空間向量推廣到立體幾何問題(研究的基本對象是點、直線、平面以及由它們組成的空間圖形)向量漸漸成為重要工具從今天開始,我們將進一步來體會向量這一工具在立體幾何中的應用.前面,我們把。+=,使,實數(shù)對共面的充要條件是存在與向量不共線,則向量如果兩個向量byaxp
【總結(jié)】空間向量與立體幾何單元檢測題一、選擇題:1、若,,是空間任意三個向量,,下列關(guān)系式中,不成立的是()A、B、C、D、2、已知向量=(1,1,0),則與共線的單位向量() A、(1,1,0) B、(0,1,0) C、(,,0)D、(1,1,1)3、若為任意
2025-01-15 05:33
【總結(jié)】華夏學校資料庫1、已知四邊形是空間四邊形,分別是邊的中點(1)求證:EFGH是平行四邊形AHGFEDCB(2)若BD=,AC=2,EG=2。求異面直線AC、BD所成的角和EG、BD所成的角。2、如圖,已知空間四邊形中,,是的中點。求證:(1)平面CDE;AEDBC(2)平面平面。
2025-04-04 05:14
【總結(jié)】章末歸納總結(jié)1.空間向量的概念及其運算與平面向量類似,向量加、減法的平行四邊形法則,三角形法則以及相關(guān)的運算律仍然成立.空間向量的數(shù)量積運算、共線向量定理、共面向量定理都是平面向量在空間中的推廣,空間向量基本定理則是向量由二維到三維的推廣.2.a(chǎn)·b=0?a⊥b是數(shù)形結(jié)合的紐帶之一,這是運用空間向量研究線線、線面、面面垂直的關(guān)鍵,通常可以與
2025-11-08 19:50
【總結(jié)】課題.3空間向量運算的坐標表示學習目標:知識與技能掌握空間向量加法、減法、數(shù)乘、數(shù)量積運算的坐標表示以及向量的長度、夾角公式的坐標表示,并能初步應用這些知識解決簡單的立體幾何問題.過程與方法①通過將空間向量運算與熟悉的平面向量的運算進行類比,使學生掌握空間向量運算的坐標表示,滲透類比的數(shù)學方法;