【總結(jié)】1共線向量與共面向量北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2ABCDDCBA)()1(''CCBCABxAC???ADyABxAAAE???')2(練習(xí)在立方體AC1中,點E是面A’C’的中心,求下列各式中
2025-11-09 00:48
【總結(jié)】空間向量與立體幾何經(jīng)典題型與答案1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標(biāo)原點長為單位長度,如圖建立空間直角坐標(biāo)系,則各點坐標(biāo)為(Ⅰ)證明:因由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在
2025-06-18 13:50
【總結(jié)】空間向量基本定理課程目標(biāo)學(xué)習(xí)脈絡(luò)1.了解空間向量基本定理及其意義,會在簡單問題中選用空間三個不共面的向量作為基底表示其他向量.2.使學(xué)生體會從平面到空間的過程,進(jìn)一步培養(yǎng)學(xué)生對空間圖形的想象能力.空間向量基本定理(1)如果向量e1,e2,e3是空間三個不共面的向量,a是空間任一
2025-11-07 23:22
【總結(jié)】1北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2如圖,設(shè)i,j,k是空間三個兩兩垂直的向量,且有公共起點O。對于空間任意一個向量p=OP,設(shè)點Q為點P在i,j所確定的平面上的正投影,由平面基本定理可知,在OQ,k所確定的平面上,存在實數(shù)z,使得OP=OQ
2025-11-09 13:29
【總結(jié)】第二章§2理解教材新知把握熱點考向應(yīng)用創(chuàng)新演練知識點一知識點二考點一考點二考點三知識點三在射擊時,為保證準(zhǔn)確命中目標(biāo),要考慮風(fēng)速、溫度等因素.其中風(fēng)速對射擊的精準(zhǔn)度影響最大.如某人向正北100m遠(yuǎn)處的目標(biāo)射擊,風(fēng)速為西風(fēng)1m/s.
2025-11-08 19:02
【總結(jié)】課題空間向量的運算(一)學(xué)習(xí)目標(biāo):知識與技能:1、熟練掌握空間向量的加法、減法、數(shù)乘及其數(shù)量積運算.2、能用空間向量的運算律解決簡單的立體幾何中的問題.過程與方法:經(jīng)歷向量運算平面到空間推廣的過程,進(jìn)一步掌握類比的數(shù)學(xué)思想方法.情感態(tài)度與價值觀:學(xué)會用發(fā)展的眼光看問題,認(rèn)識事物是在不斷發(fā)展變化的,會用聯(lián)系的觀點看
2025-11-24 00:16
【總結(jié)】課題:空間向量的運算(二)學(xué)習(xí)目標(biāo):知識與技能:1、熟練掌握空間向量的數(shù)量積運算.2、能用空間向量的運算律解決簡單的立體幾何中的問題過程與方法:經(jīng)歷向量運算平面到空間推廣的過程,進(jìn)一步掌握類比的數(shù)學(xué)思想方法.情感態(tài)度與價值觀:學(xué)會用發(fā)展的眼光看問題,認(rèn)識事物是在不斷發(fā)展變化的,會用聯(lián)系的觀點看待問題。
2025-11-09 18:59
【總結(jié)】第一課時:§立體幾何中的向量方法(一)教學(xué)要求:向量運算在幾何證明與計算中的應(yīng)用.掌握利用向量運算解幾何題的方法,并能解簡單的立體幾何問題.教學(xué)重點:向量運算在幾何證明與計算中的應(yīng)用.教學(xué)難點:向量運算在幾何證明與計算中的應(yīng)用教學(xué)過程:一、復(fù)習(xí)引入1.用向量解決立體幾何中的一些典型問題的基本思考方法是:⑴
2025-11-21 04:03
【總結(jié)】高中新課標(biāo)數(shù)學(xué)選修(2-1)《空間向量與立體幾何》測試題一、選擇題1.空間的一個基底??,,abc所確定平面的個數(shù)為()A.1個B.2個C.3個D.4個以上答案:2.已知(121)A?,,關(guān)于面xOy的對稱點為B,而B關(guān)于x軸的對稱點為C,則BC?(
2025-11-06 13:15
【總結(jié)】第一章一、選擇題1.下列命題中全稱命題的個數(shù)為()①平行四邊形的對角線互相平分;②梯形有兩邊平行;③存在一個菱形,它的四條邊不相等.A.0B.1C.2D.3[答案]C[解析]①②是全稱命題,③是特稱命題.2.下列命題:(1)至少有一個x,使x2
【總結(jié)】空間“綜合”問題向量法解立體幾何問題的優(yōu)點:1.思路容易找,甚至可以公式化;一般充分結(jié)合圖形發(fā)現(xiàn)向量關(guān)系或者求出(找出)平面的法向量、直線的方向向量,利用這些向量借助向量運算就可以解決問題.2.不需要添輔助線和進(jìn)行困難的幾何證明;3.若坐標(biāo)系容易建立,更是水到渠成.復(fù)習(xí)引入如圖,已知:
2025-11-09 12:14
【總結(jié)】ZPZ空間“角度”問題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復(fù)習(xí)引入①方向向量法將二面角轉(zhuǎn)化為二面角的兩個面的
2025-11-08 12:02
【總結(jié)】ZPZ空間“距離”問題一、復(fù)習(xí)引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運算結(jié)果“翻譯”成相應(yīng)的幾何意義。(化為向量
【總結(jié)】平面向量空間向量推廣到立體幾何問題(研究的基本對象是點、直線、平面以及由它們組成的空間圖形)向量漸漸成為重要工具從今天開始,我們將進(jìn)一步來體會向量這一工具在立體幾何中的應(yīng)用.前面,我們把。+=,使,實數(shù)對共面的充要條件是存在與向量不共線,則向量如果兩個向量byaxp
【總結(jié)】空間向量與立體幾何單元檢測題一、選擇題:1、若,,是空間任意三個向量,,下列關(guān)系式中,不成立的是()A、B、C、D、2、已知向量=(1,1,0),則與共線的單位向量() A、(1,1,0) B、(0,1,0) C、(,,0)D、(1,1,1)3、若為任意
2025-01-15 05:33