【總結(jié)】第三章間向量與立體幾何§空間向量及其運算知識點一空間向量概念的應(yīng)用給出下列命題:①將空間中所有的單位向量移到同一個點為起點,則它們的終點構(gòu)成一個圓;②若空間向量a、b滿足|a|=|b|,則a=b;③
2024-12-08 22:40
【總結(jié)】第一課時空間向量及其加減與數(shù)乘運算教學(xué)要求:理解空間向量的概念,掌握其表示方法;會用圖形說明空間向量加法、減法、數(shù)乘向量及它們的運算律;能用空間向量的運算意義及運算律解決簡單的立體幾何中的問題.教學(xué)重點:空間向量的加減與數(shù)乘運算及運算律.教學(xué)難點:由平面向量類比學(xué)習(xí)空間向量.教學(xué)過程:一、復(fù)習(xí)引入1、有關(guān)平面向量的一
2025-11-10 22:43
【總結(jié)】第一課時?學(xué)習(xí)目標?情境設(shè)置?探索研究?反思應(yīng)用?歸納總結(jié)?作業(yè)學(xué)習(xí)目標?、標準方程及其求法;?、焦距、焦點位置與方程關(guān)系;?.情境設(shè)置?橢圓的定義?把平面內(nèi)與兩個定點F1、F2的距離和等于常數(shù)(大于|F1F2|)的點軌跡叫做橢圓。這兩
2025-11-10 16:17
【總結(jié)】第二章一、選擇題1.下列說法中正確的是()A.任意兩個空間向量都可以比較大小B.方向不同的空間向量不能比較大小,但同向的空間向量可以比較大小C.空間向量的大小與方向有關(guān)D.空間向量的??梢员容^大小[答案]D[解析]任意兩個空間向量,不論同向還是不同向均不存在大小關(guān)系,故A、B不正確;
2024-11-30 11:35
【總結(jié)】§3.空間向量運算的坐標表示知識點一空間向量的坐標運算設(shè)a=(1,5,-1),b=(-2,3,5).(1)若(ka+b)∥(a-3b),求k;(2)若(ka+b)⊥(a-3b),求k.解(1)ka+b=(k-2,5k+3,-k+5)
2025-11-11 03:14
【總結(jié)】§3.空間向量的數(shù)量積運算知識點一求兩向量的數(shù)量積如圖所示,已知正四面體O-ABC的棱長為a,求AB·OC..解由題意知|AB|=|AC|=|AO|=a,且〈AB,AO〉=120AB,CA〉=12
【總結(jié)】空間“角度”問題法門高中姚連省一、復(fù)習(xí)引入用空間向量解決立體幾何問題的“三步曲”。(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(2)通過向量運算,研究點、直線、平面之間的位置關(guān)系以及它們之間距離和夾角等問題;(3)把向量的運算結(jié)果“翻譯”成相應(yīng)的幾何
2025-11-09 13:29
【總結(jié)】第二章§5第二課時把握熱點考向應(yīng)用創(chuàng)新演練考點一考點二理解教材新知第二課時直線與平面的夾角在上節(jié)研究的山體滑坡問題中,A、B兩點到直線l(水平地面與山坡的交線)的距離分別為AC和BD,直線BD與地面ACD的夾角為φ.
2025-11-08 19:02
【總結(jié)】ykiA(x,y,z)Ojxz重慶市萬州分水中學(xué)高中數(shù)學(xué)選修2-1《空間向量的坐標表示》教案備課時間教學(xué)課題教時計劃1教學(xué)課時1教學(xué)目標1.能用坐標表示空間向量,掌握空間向量的坐標運算;2.會根據(jù)向量的坐標判斷兩個空間向量平行。重
2025-11-11 00:30
【總結(jié)】1法門高中姚連省立體幾何中的向量方法(四)----利用向量解決平行與垂直問題2一、復(fù)習(xí)1、用空間向量解決立體幾何問題的“三步曲”(1)建立立體圖形與空間向量的聯(lián)系,用空間向量表示問題中涉及的點、直線、平面,把立體幾何問題轉(zhuǎn)化為向量問題;(化為向量問題)
【總結(jié)】1法門高中姚連省2前面,我們把平面向量推廣到空間向量向量漸漸成為重要工具立體幾何問題(研究的基本對象是點、直線、平面以及由它們組成的空間圖形)從今天開始,我們將進一步來體會向量這一工具在立體幾何中的應(yīng)用.
【總結(jié)】解及其坐標表示lαOP例1在平面內(nèi)的一條直線,如果和這個平面的一條斜線的射影垂直,那么它也和這條斜線垂直。已知:如圖,PO,PA分別是平面α的垂線,斜線,AO是PA在平面α內(nèi)的射影,.:,,PAlOAll???求證且?AlαOP.,,OAPOal
2025-11-09 12:14
【總結(jié)】1e2eaPOA'P'B'C'BAC間向量的基本定理教學(xué)目標1.掌握及其推論,理解空間任意一個向量可以用不共面的三個已知向量線性表示,而且這種表示是唯一的;2.在簡單問題中,會選擇適當(dāng)?shù)幕讈肀硎救我豢臻g向量。
【總結(jié)】§3向量的坐標表示和空間向量基本定理空間向量的標準正交分解與坐標表示課程目標學(xué)習(xí)脈絡(luò)1.理解空間向量坐標的概念,會確定一些簡單幾何體的頂點坐標.2.理解向量a在向量b上的投影的概念,了解向量的數(shù)量積的幾何意義.121.空間向量的標準正交分解與坐標表示12名
2025-11-07 23:22
【總結(jié)】第三章§2理解教材新知把握熱點考向應(yīng)用創(chuàng)新演練考點一考點二考點三看下面兩個問題:(1)三角函數(shù)都是周期函數(shù),y=tanx是三角函數(shù),所以y=tanx是周期函數(shù);(2)循環(huán)小數(shù)是有理數(shù),2·是循環(huán)小數(shù),所以2&
2025-11-09 08:08