【總結(jié)】橢圓的簡單幾何性質(zhì)212..??.,.小、對稱性和位置等包括橢圓的形狀、大程研究它的幾何性質(zhì)方下面再利用橢圓的標(biāo)準(zhǔn)橢圓的標(biāo)準(zhǔn)方程立了建出發(fā)幾何特征上面從橢圓的定義?????????.來研究橢圓的幾何性質(zhì)我們用橢圓的標(biāo)準(zhǔn)方程1012222babyax.,.,幾何性質(zhì)其特性等來研究它
2024-11-18 15:26
【總結(jié)】復(fù)習(xí)回顧:?1求動點軌跡方程的一般步驟:(1)建立適當(dāng)?shù)淖鴺?biāo)系,用有序?qū)崝?shù)對表示曲線上任意一點M的坐標(biāo);(2)寫出適合條件P的點M的集合;(可以省略,直接列出曲線方程)(3)用坐標(biāo)表示條件P(M),列出方程(5)證明以化簡后的方程的解為坐標(biāo)的點都是曲線上的點(可以省略不寫,
2024-11-18 08:56
【總結(jié)】《橢圓的幾何性質(zhì)》教學(xué)目標(biāo)?知識與技能目標(biāo)?了解用方程的方法研究圖形的對稱性;理解橢圓的范圍、對稱性及對稱軸,對稱中心、離心率、頂點的概念;掌握橢圓的標(biāo)準(zhǔn)方程、會用橢圓的定義解決實際問題;通過例題了解橢圓的第二定義,準(zhǔn)線及焦半徑的概念,利用信息技術(shù)初步了解橢圓的第二定義.?過程與方法目標(biāo)?(1)復(fù)習(xí)與引入過程
2025-07-24 18:14
【總結(jié)】選修1-1橢圓及其標(biāo)準(zhǔn)方程一、選擇題1.(2021·上海)設(shè)P是橢圓x225+y216=1上的點,若F1、F2是橢圓的兩個焦點,則|PF1|+|PF2|等于()A.4B.5C.8D.10[答案]D[解析]∵橢圓長軸2a=10,∴|P
2024-11-24 22:00
【總結(jié)】橢圓及其標(biāo)準(zhǔn)方程同步練習(xí)一,選擇題:1.方程Ax2+By2=C表示橢圓的條件是()(A)A,B同號且A≠B(B)A,B同號且C與異號(C)A,B,C同號且A≠B(D)不可能表示橢圓2.已知橢圓方程為221499xy??中,F(xiàn)1,F2分別為它的兩個焦點,則下列
2024-12-05 06:35
【總結(jié)】-*-第二章圓錐曲線與方程-*-§1橢圓-*-橢圓及其標(biāo)準(zhǔn)方程首頁XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當(dāng)堂檢測學(xué)習(xí)目標(biāo)思維脈絡(luò)1.了解橢圓的實際背景,理解橢圓、焦點、焦距的定義.2.掌
2024-11-16 23:27
【總結(jié)】命題學(xué)習(xí)目標(biāo):掌握命題,真命題,假命題概念,會寫出命題的條件和結(jié)論教學(xué)過程:思考下列語句有什么特點?你能判斷它們的真假嗎?(1)若直線//ab,則直線a和直線b無公共點;(2)247??(3)垂直于同一條直線的兩個平面平行;(4)若21x?,則1x?;(5)兩個全等三角形的面積相等;
2024-12-09 10:34
【總結(jié)】圓錐曲線與方程第二章§1橢圓橢圓及其標(biāo)準(zhǔn)方程第二章課堂典例探究2課時作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí),經(jīng)歷從具體情境中抽象出橢圓的過程和橢圓標(biāo)準(zhǔn)方程的推導(dǎo)與化簡過程.2.掌握橢圓的定義、標(biāo)準(zhǔn)方程及幾何圖形,會用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程.___________
【總結(jié)】天體的運行如何精確地設(shè)計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.課題引入:橢圓的畫法PF2F1注意:橢圓定義中容易遺漏的三處地方:(1)必須在平面內(nèi);(2)兩個定點---兩點間距離確定;(常記作2c)(3)繩長---軌跡上任意點到兩定點距離
2024-11-18 13:57
【總結(jié)】復(fù)習(xí)::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當(dāng)焦點在X軸上時當(dāng)焦點在Y軸上時)0(12222????babyax)0(12222????
2024-11-18 12:15
【總結(jié)】城郊中學(xué)高二數(shù)學(xué)組:代俊俊如何精確地設(shè)計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.課題引入:橢圓的畫法PF2F1注意:橢圓定義中容易遺漏的三處地方:(1)必須在平面內(nèi);(2)兩個定點---兩點間距離確定;(常記作2c)(3)繩長---軌跡上任
2024-11-18 00:48
【總結(jié)】洪澤外國語中學(xué)程懷宏如何精確地設(shè)計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.問題情境?動畫演示:“神六”飛行注意:橢圓定義中容易遺漏的三處地方:(1)必須在平面內(nèi).(2)兩個定點---兩點間距離確定.(3)繩長--軌跡上任意點到兩定點
【總結(jié)】標(biāo)準(zhǔn)方程范圍對稱性頂點坐標(biāo)焦點坐標(biāo)半軸長離心率a、b、c的關(guān)系22221(0)xyabab????|x|≤a,|y|≤b關(guān)于x軸、y軸成軸對稱;關(guān)于原點成中心對稱(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)長半軸
【總結(jié)】2020/12/242020/12/24復(fù)習(xí)回顧平面內(nèi),動點p到兩個定點F1F2的距離和是常數(shù),p形成的軌跡?12122PFPFaFF???12122PFPFaFF???12122PFPFaFF???無軌跡.軌跡為線段軌跡為橢圓2020/12/24
2024-11-17 11:59
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用yxoQPQQ)(xfy?Tyxo)(xfy?P相交再來一次直線PQ的斜率為xyxxxyyyxxyykPQPQPQ?????????????0000)()(PQ無限靠近切線PTxykk
2024-11-17 20:11