【總結(jié)】Email:lihongqing999@:570206??谑泻P愦蟮?9號(hào)海南華僑中學(xué)李紅慶工作室函數(shù)的單調(diào)性與最值漫談海南華僑中學(xué)黃玲玲函數(shù)的單調(diào)性與最值是中學(xué)數(shù)學(xué)的核心內(nèi)容.從中學(xué)數(shù)學(xué)知識(shí)的網(wǎng)絡(luò)來看,函數(shù)的單調(diào)性與最值在中學(xué)數(shù)學(xué)中起著“紐帶”的作用,她承前于函數(shù)的值域、方程有解的條件、不等式證明,啟后于數(shù)列的最值問題、導(dǎo)數(shù)的應(yīng)用等知識(shí).例如:求函數(shù)的值域,令,則,,則函
2025-05-16 01:34
【總結(jié)】§函數(shù)的單調(diào)性一、教學(xué)目標(biāo)(1)通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性及其幾何意義;(2)學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);(3)能夠熟練應(yīng)用定義判斷與證明函數(shù)在某區(qū)間上的單調(diào)性.二、教學(xué)重點(diǎn)與難點(diǎn):(1)重點(diǎn):函數(shù)的單調(diào)性及其幾何意義.(2)難點(diǎn):利用函數(shù)的單調(diào)性定義判斷、證明函數(shù)的單調(diào)性.
2024-12-02 08:38
【總結(jié)】導(dǎo)數(shù)單調(diào)性、極值、最值教學(xué)目標(biāo):掌握運(yùn)用導(dǎo)數(shù)求解函數(shù)單調(diào)性的步驟與方法重點(diǎn)難點(diǎn):能夠判定極值點(diǎn),并能求解閉區(qū)間上的最值問題利用導(dǎo)數(shù)研究函數(shù)的極值、最值:(1)求導(dǎo)數(shù);(2)解方程;(3)使不等式成立的區(qū)間就是遞增區(qū)間,使成立的區(qū)間就是遞減區(qū)間。,右側(cè)____0,那么是的極大值;如果在根附近的左側(cè)____0,右側(cè)____0,那么是的極小值典型例題:
2025-07-26 05:39
【總結(jié)】利用函數(shù)的單調(diào)性(最值)求參數(shù)的取值范圍例1.已知函數(shù)),0()(2Raxxaxxf????,若)(xf在????,2上為增函數(shù),求實(shí)數(shù)a的取值范圍.跟蹤訓(xùn)練:1.已知函數(shù)????????,2),0()(2xaxaxxf上遞增,求實(shí)數(shù)a的取值范圍.2.若函數(shù)xxm
2024-11-09 06:38
【總結(jié)】函數(shù)的單調(diào)性與奇偶性一.基礎(chǔ)練習(xí):1.求下列函數(shù)的單調(diào)區(qū)間:(1)223xxy???(2)2212???xxy2.判斷下列函數(shù)奇偶性:(1)|32||32|)(????xxxf(2)2|2|1)(2????xxxf12?x(x0)
2024-11-10 23:50
【總結(jié)】....導(dǎo)數(shù)與單調(diào)性極值最基礎(chǔ)值習(xí)題 一.選擇題1.可導(dǎo)函數(shù)y=f(x)在某一點(diǎn)的導(dǎo)數(shù)值為0是該函數(shù)在這點(diǎn)取極值的( ?。〢.充分條件 B.必要條件C.充要條件 D.必要非充分條件2.函數(shù)y=1+3x﹣x3有( )A.極小值﹣1,極大值3 B.極小值﹣2,極
2025-03-25 00:40
【總結(jié)】天津市2018屆高三數(shù)學(xué)函數(shù)單調(diào)性與最值學(xué)校:___________姓名:___________班級(jí):___________考號(hào):___________1.若是上的單調(diào)遞增函數(shù),則實(shí)數(shù)的取值范圍為()A.B.C.D.2.已知函數(shù)在區(qū)間上是增函數(shù),則的取值范圍是()A.B.C.
2025-03-25 07:09
【總結(jié)】第一課時(shí):單調(diào)性教學(xué)目標(biāo):?知識(shí)教學(xué)目標(biāo):?.?.?能力訓(xùn)練目標(biāo):?、推理的能力.?.?情感滲透目標(biāo):、發(fā)現(xiàn)規(guī)律、歸納概括的能力.、求異思維等能力.觀察下列函數(shù)圖象,體會(huì)它們的特點(diǎn):在上面的六幅函數(shù)圖象中,有的圖象由左至右是上升的;有的圖象是下降的;還有
2024-11-12 17:26
【總結(jié)】函數(shù)的單調(diào)性德國(guó)著名心理學(xué)家艾賓浩斯研究數(shù)據(jù)時(shí)間間隔記憶保持量剛剛記憶完畢100%20分鐘之后%1小時(shí)之后%8-9小時(shí)之后%1天后%2天后%6天后%一個(gè)月后%……保持量(
2024-11-17 17:39
【總結(jié)】導(dǎo)數(shù)與函數(shù)的單調(diào)性、極值、最值適用學(xué)科高中數(shù)學(xué)適用年級(jí)高中三年級(jí)適用區(qū)域通用課時(shí)時(shí)長(zhǎng)(分鐘)60知識(shí)點(diǎn)函數(shù)的單調(diào)性函數(shù)的極值函數(shù)的最值教學(xué)目標(biāo)掌握函數(shù)的單調(diào)性求法,會(huì)求函數(shù)的函數(shù)的極值,會(huì)求解最值問題,教學(xué)重點(diǎn)會(huì)利用導(dǎo)數(shù)求解函數(shù)的單調(diào)性,會(huì)求解函數(shù)的最值。教學(xué)難點(diǎn)熟練掌握函數(shù)的單調(diào)性、極值、最值的求法,以及分類討論思想的應(yīng)用
【總結(jié)】導(dǎo)數(shù)與單調(diào)性極值最基礎(chǔ)值習(xí)題 一.選擇題1.可導(dǎo)函數(shù)y=f(x)在某一點(diǎn)的導(dǎo)數(shù)值為0是該函數(shù)在這點(diǎn)取極值的( )A.充分條件 B.必要條件C.充要條件 D.必要非充分條件2.函數(shù)y=1+3x﹣x3有( ?。〢.極小值﹣1,極大值3 B.極小值﹣2,極大值3C.極小值﹣1,極大值1 D.極小值﹣2,極大值23.函數(shù)f(x)=x3+ax2﹣3x﹣9,已知f
2025-08-05 05:49
【總結(jié)】1.設(shè)函數(shù)。(1)當(dāng)a=1時(shí),求的單調(diào)區(qū)間。(2)若在上的最大值為,求a的值。解:對(duì)函數(shù)求導(dǎo)得:,定義域?yàn)椋?,2)當(dāng)a=1時(shí),令當(dāng)為增區(qū)間;當(dāng)為減函數(shù)。當(dāng)有最大值,則必不為減函數(shù),且0,為單調(diào)遞增區(qū)間。最大值在右端點(diǎn)取到。。2.已知函數(shù)其中實(shí)數(shù)。(I)若a=2,求曲線在點(diǎn)處的切線方程;(II)若在x=1處取得極值,試討論的單調(diào)
2025-03-24 07:03
【總結(jié)】觀察下列各個(gè)函數(shù)的圖象,并說說它們分別反映了相應(yīng)函數(shù)的哪些變化規(guī)律:1、觀察這三個(gè)圖象,你能說出圖象的特征嗎?2、隨x的增大,y的值有什么變化?畫出下列函數(shù)的圖象,觀察其變化規(guī)律:1、從左至右圖象上升還是下降____?2、在區(qū)間________上,隨著x的增大,f(x)的值隨著_
2024-11-16 21:20
【總結(jié)】函數(shù)的單調(diào)性與最值一、知識(shí)梳理1.增函數(shù)、減函數(shù)一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮,區(qū)間D?I,如果對(duì)于任意x1,x2∈D,且x1f(x2).2.單調(diào)區(qū)間的定義若函數(shù)y=f(x)在區(qū)間D上是增函數(shù)或減函數(shù),則稱函數(shù)y=
2025-03-24 12:17
【總結(jié)】(?。┲蹬c導(dǎo)數(shù)課前自主學(xué)案求函數(shù)f(x)的極值首先解方程f′(x)=f′(x0)=0時(shí),(1)如果在x0附近的左側(cè)_________,右側(cè)__________,那么f(x0)是函數(shù)的_______;(2)如果在x0附近的左側(cè)_________,右側(cè)__________,那么f(x0)是函數(shù)的_______.
2025-07-26 19:47