【總結(jié)】圓錐曲線與方程§MQF2PO1O2VF1古希臘數(shù)學家Dandelin在圓錐截面的兩側(cè)分別放置一球,使它們都與截面相切(切點分別為F1,F(xiàn)2),又分別與圓錐面的側(cè)面相切(兩球與側(cè)面的公共點分別構(gòu)成圓O1和圓O2).過M點作圓錐面的一條母線分別交圓O1,圓O2與
2024-11-17 23:31
【總結(jié)】圓錐曲線的統(tǒng)一定義江蘇省運河中學高二備課組2、雙曲線的定義:平面內(nèi)到兩定點F1、F2距離之差的絕對值等于常數(shù)2a(2a|F1F2|)的點的軌跡表達式||PF1|-|PF2||=2a(2a|F1F2|)3、拋物線的定義:平面內(nèi)到定點F的距離和到定直線的距離相等的點的軌跡表達式|PF|=
2024-11-17 23:32
【總結(jié)】2022年高考數(shù)學試題分類匯編——圓錐曲線一、選擇題1.(2022全國卷Ⅰ理)設(shè)雙曲線221xyab??(a>0,b>0)的漸近線與拋物線y=x2+1相切,則該雙曲線的離心率等于()(A)3(B)2(C)5(D)6解:設(shè)切點00(,)Px
2025-01-09 15:45
【總結(jié)】圓錐曲線:第一定義中要重視“括號”內(nèi)的限制條件:橢圓中,與兩個定點F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當常數(shù)等于時,軌跡是線段FF,當常數(shù)小于時,無軌跡;雙曲線中,與兩定點F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點的兩條射線,若﹥|FF|,則軌跡不存在。若去掉定義中的絕對值則軌跡僅表
2025-08-08 18:44
【總結(jié)】圓錐曲線 圓錐曲線第第一二定定義義標準方程的關(guān)系橢圓性質(zhì)對稱性焦點頂點離心率準線焦半徑直線與橢圓的位置關(guān)系相交相切相離第第一二定定義義標準方程的關(guān)系雙曲線性質(zhì)對稱性焦點頂點離心率準線焦半徑直線與雙曲線的位置關(guān)系相交相切相離漸近線
2025-06-07 23:21
【總結(jié)】學案52 直線與圓錐曲線位置關(guān)系導學目標:.自主梳理1.直線與橢圓的位置關(guān)系的判定方法(1)將直線方程與橢圓方程聯(lián)立,消去一個未知數(shù),得到一個一元二次方程,若Δ0,則直線與橢圓________;若Δ=0,則直線與橢圓________;若Δ0,則直線與橢圓________.(2)直線與雙曲線的位置關(guān)系的判定方法將直線方程與雙曲線方程聯(lián)立消去y(
2025-04-17 12:25
【總結(jié)】江蘇省響水中學高中數(shù)學第2章《圓錐曲線與方程》圓錐曲線(1)導學案蘇教版選修1-1學習目標:,發(fā)現(xiàn)圓錐曲線的形成過程,進而歸納出它們的定義,培養(yǎng)觀察、辨析、歸納問題的能力..,感受數(shù)形結(jié)合的基本思想和理解代數(shù)方法研究幾何性質(zhì)的優(yōu)越性.重點難點:
2024-11-19 17:31
【總結(jié)】WORD資料可編輯圓錐曲線專題練習一、選擇題,則到另一焦點距離為()A.B.C.D.2.若橢圓的對稱軸為坐標軸,長軸長與短軸長的和為,焦距為,則
2025-06-24 02:09
【總結(jié)】高中數(shù)學圓錐曲線基本知識與典型例題第一部分:橢圓基本知識點:第一定義:平面內(nèi)到兩個定點F1、F2的距離之和等于定值2a(2a|F1F2|)的點的軌跡叫做橢圓,這兩個定點叫做橢圓的焦點,兩焦點的距離叫做橢圓的焦距.第二定義:平面內(nèi)到定點F與到定直線l的距離之比是常數(shù)e(0e1)的點的軌跡是橢圓,定點叫做橢圓的焦點,定直線叫做橢圓的準線,常數(shù)叫做橢圓
2025-04-04 05:07
【總結(jié)】江蘇省漣水縣第一中學高中數(shù)學圓錐曲線教學案蘇教版選修1-1教學目標:1.通過用平面截圓錐面,經(jīng)歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義,并能用數(shù)學符號或自然語言描述.2.通過用平面截圓錐面,感受、了解雙曲線的定義,能用數(shù)學符號或自然語言描述雙曲線的定義.教學重點:橢圓、拋物線、雙曲線的定義.教學難點:用數(shù)
2024-12-04 18:02
【總結(jié)】圓錐曲線問題中的“設(shè)而不求”設(shè)而不求是解析幾何中一種常用的重要方法和技巧,它能使問題簡化。但如何使用這種方法,在使用中應注意哪些問題,卻經(jīng)常困擾著同學們。在此筆者愿跟大家談談對上述問題的看法與認識。一、哪些問題適合“設(shè)而不求”一般說來,解題中涉及不到但又不具體求出的中間量(稱為相關(guān)量)可采取“設(shè)而不求,整體思想”。具體體現(xiàn)在:①與弦的中點有關(guān)的問題;②定值與定點問題;③對稱性
2025-06-07 23:16
【總結(jié)】2016年高考數(shù)學理試題分類匯編圓錐曲線一、選擇題1、(2016年四川高考)設(shè)O為坐標原點,P是以F為焦點的拋物線上任意一點,M是線段PF上的點,且=2,則直線OM的斜率的最大值為(A)(B)(C)(D)1【答案】C2、(2016年天津高考)已知雙曲線(b0),以原點為圓心,雙曲線的實半軸長為半徑長的圓與雙曲線的兩條漸近線相交于
2025-01-14 14:45
【總結(jié)】橢圓圖圖象和定義課堂練習雙曲線的圖象和定義拋物線的圖象和定義橢圓的定義平面內(nèi)到兩定點F1,F(xiàn)2的距離之和為常數(shù)(大于F1F2距離)的點的軌跡叫橢圓,兩個定點叫橢圓的焦點,兩焦點的距離叫做橢圓的焦距雙曲線的定義平面內(nèi)到兩定點F1F2
2024-11-18 08:46
【總結(jié)】圓錐曲線選擇題專項訓練 (有詳細解答) 1設(shè)、分別為雙曲線,滿足,且到直線的距離等于雙曲線的實軸長,則該雙曲線的漸近線方程(A)(B)(C)(D) 解析:利用題設(shè)條件和雙曲線性質(zhì)在三角形中尋找等...
2025-03-09 22:26
【總結(jié)】1、已知方程0表示一個圓.(1)求t的取值范圍;(2)求該圓半徑的取值范圍.2、若兩條直線的交點P在圓的內(nèi)部,求實數(shù)的取值范圍.3、已知圓M過兩點C(1,-1),D(-1,1),且圓心M在上.(1)求圓M的方程;(2)設(shè)P是直線上的動點,PA、PB是圓M的兩條切線,A、B為切點,求四邊形PAMB面積的最小值.4、已知一圓的方程為,設(shè)該圓過點的最長
2025-06-18 13:53