【總結】直線與圓錐曲線的位置關系(1)X蚌埠五中李開紅直線與圓錐曲線位置關系的綜合題在高考中多以高檔題、壓軸題出現(xiàn),主要涉及位置關系的判定,弦長問題、最值問題、對稱問題、軌跡問題等。突出考查了數(shù)形結合、分類討論、函數(shù)與方程、等價轉化等數(shù)學思想方法,對考生分析問題和解決問題的能力、計算能力的要求較高,起到了拉開考生“檔次”、有
2025-11-07 21:27
【總結】1第八章橢圓、雙曲線與拋物線考點綜述橢圓、雙曲線與拋物線是高中數(shù)學的一個重要內容,它的基本特點是數(shù)形兼?zhèn)?,可與代數(shù)、三角、幾何知識相溝通,歷來是高考的重點內容.縱觀近幾年高考試題中對圓錐曲線的考查,主要體現(xiàn)出以下幾個特點:1.基本問題,主要考查以下內容:①橢圓、雙曲線與拋物線的兩種定義、標準方程及a、b、c、e、p五
2025-08-13 16:15
【總結】啟智輔導高考圓錐曲線試題精選一、選擇題:(每小題5分,計50分)1、(2008海南、寧夏文)雙曲線的焦距為()A.3 B.4 C.3 D.42.(2004全國卷Ⅰ文、理)橢圓的兩個焦點為F1、F2,過F1作垂直于x軸的直線與橢圓相交,一個交點為P,則=() A.B.C.D.43.(2006遼寧文)方程
2025-06-27 17:29
【總結】高考數(shù)學圓錐曲線部分知識點梳理1、方程的曲線:在平面直角坐標系中,如果某曲線(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程的實數(shù)解建立了如下的關系:(1)曲線上的點的坐標都是這個方程的解;(2)以這個方程的解為坐標的點都是曲線上的點,那么這個方程叫做曲線的方程;這條曲線叫做方程的曲線.點與曲線的關系:若曲線的方程是,則點在曲線上;點不在曲線上.兩條曲線的交
2025-04-04 05:08
【總結】直線和圓錐曲線的位置關系【使用說明及學法指導】1.先自學課本,理解概念,完成導學提綱;2.小組合作,動手實踐?!緦W習目標】1.理解直線與圓錐曲線的位置關系;2.掌握直線與圓錐曲線關系中的幾何性質和處理方法;【重點】直線與圓錐曲線的位置關系【難點】掌握直線與圓錐曲線關系中的幾何性質和處理方法一、知識梳理1.直
2025-11-09 16:52
【總結】圓錐曲線:第一定義中要重視“括號”內的限制條件:橢圓中,與兩個定點F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當常數(shù)等于時,軌跡是線段FF,當常數(shù)小于時,無軌跡;雙曲線中,與兩定點F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點的兩條射線,若﹥|FF|,則軌跡不存在。若去掉定義中的絕對值則軌跡
2025-08-05 18:37
【總結】WORD資料可編輯§知識要點一、橢圓方程1.橢圓方程的第一定義:平面內與兩個定點F1,F(xiàn)2的距離的和等于定長(定長通常等于2a,且2aF1F2)的點的軌跡叫橢圓。(1)①橢圓的標準方程:i.中心在原點,焦點在x軸上:.ii.
【總結】圓錐曲線:第一定義中要重視“括號”內的限制條件:橢圓中,與兩個定點F,F(xiàn)的距離的和等于常數(shù),且此常數(shù)一定要大于,當常數(shù)等于時,軌跡是線段FF,當常數(shù)小于時,無軌跡;雙曲線中,與兩定點F,F(xiàn)的距離的差的絕對值等于常數(shù),且此常數(shù)一定要小于|FF|,定義中的“絕對值”與<|FF|不可忽視。若=|FF|,則軌跡是以F,F(xiàn)為端點的兩
2025-08-08 15:44
【總結】直線與圓錐曲線的位置關系一.基本方法:1.直線與圓錐曲線的位置關系可以通過對直線方程與圓錐曲線方程組成的二元二次方程組的解的情況的討論來研究。即方程消元后得到一個一元二次方程,利用判別式⊿來討論(注⊿≠0時,未必只有二個交點)。2.直線與圓錐曲線的位置關系,還可以利用數(shù)形結合、以形助數(shù)的方法來解并決。3.如果直線的斜率為
2025-11-01 08:33
【總結】江蘇省響水中學高中數(shù)學第2章《圓錐曲線與方程》圓錐曲線的綜合運用(二)導學案蘇教版選修1-1學習目標:1.在理解和掌握圓錐曲線的定義和簡單幾何性質的基礎上,學會有關圓錐曲線的知識的內在聯(lián)系和綜合應用。、探索性問題、定點與定值問題、范圍與最值問題等。教學重點:解析幾何中最值問題。課前預習:1.設F1和F2是雙曲
2025-11-10 17:31
【總結】江蘇省響水中學高中數(shù)學第2章《圓錐曲線與方程》圓錐曲線的綜合運用(一)導學案蘇教版選修1-1學習目標:歸納圓錐曲線與其他知識點相結合的綜合性問題,如:解三角形、函數(shù)、數(shù)列、平面向量、不等式、方程等,掌握其解題技巧和方法,熟練運用設而不求與點差法.教學重點:解決圓錐曲線的應用問題的一般步驟。課前預習:
【總結】第一篇:人教版高中數(shù)學《圓錐曲線和方程》全部教案 人教版高中數(shù)學全部教案 橢圓及其標準方程 一、教學目標(一)知識教學點 使學生理解橢圓的定義,掌握橢圓的標準方程的推導及標準方程.(二)能力訓...
2025-11-07 05:14
【總結】課題直線與圓錐曲線的交點學習目標:1.了解直線與圓錐曲線的三種位置關系.2.掌握求解直線與圓錐曲線有關問題的方法.3.加強數(shù)形結合思想方法的訓練與應用.,是數(shù)形結合思想的應用與體現(xiàn).學習重點:求解直線與圓錐曲線有關問題的方法學習難點:圓錐曲線的弦長問題。學習方法:以講學稿為依托
2025-11-24 00:16
【總結】WORD資料可編輯高中數(shù)學圓錐曲線基本知識與典型例題第一部分:橢圓1.橢圓的概念在平面內與兩定點F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點的軌跡叫做橢圓.這兩個定點叫做橢圓的焦點,兩焦點間的距離叫做橢圓的焦距.集合P={M||MF1|+|
2025-04-04 05:07
【總結】圓錐曲線方程知識要點一、橢圓方程及其性質.1.橢圓的第一定義:橢圓的第二定義:,點P到定點F的距離,d為點P到直線l的距離其中F為橢圓焦點,l為橢圓準線①橢圓的標準方程:的參數(shù)方程為()(現(xiàn)在了解,后面選修4-4要詳細講).②通徑:垂直于對稱軸且過焦點的弦叫做通徑,橢圓通徑長為③設橢圓:上弦AB的中點為M(x0,y0),則斜率kAB=,對橢圓:,則kAB=.弦