【總結(jié)】第一篇:初中幾何證明題 (1)如圖,在三角形ABC中,BD,CE是高,F(xiàn)G分別為ED,BC的中點,O是外心,求證AO∥FG問題補充: 證明:延長AO,交圓O于M,連接BM,則:∠ABM=90°,且...
2024-10-24 21:41
【總結(jié)】第一篇:中考數(shù)學證明題 中考數(shù)學證明題 O是已知線段AB上的一點,以O(shè)B為半徑的圓O交AB于點C,以線段AO為直徑的半圓圓o于點D,過點B作AB的垂線與AD的延長線交于點E (1)說明AE切圓o...
2024-10-28 23:51
【總結(jié)】第一篇:數(shù)學證明題解題方法 數(shù)學證明題解題方法 第一步:結(jié)合幾何意義記住零點存在定理、中值定理、泰勒公式、極限存在的兩個準則等基本原理,包括條件及結(jié)論。知道基本原理是證明的基礎(chǔ),知道的程度(即就是...
2025-10-07 09:40
【總結(jié)】菱形的判定證明題練習1如圖,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于點E.求證:四邊形AECD是菱形.2已知:如圖,在中,AE是BC邊上的高,將沿方向平移,使點E與點C重合,得.(1)求證:;ADGCBFE(2)若,當A
2025-03-25 07:35
【總結(jié)】幾何證明、B、C在同一直線上,在直線AC的同側(cè)作和,連接AF,CE.取AF、CE的中點M、N,連接BM,BN,MN.(1)若和是等腰直角三角形,且(如圖1),則是 三角形.(2)在和中,若BA=BE,BC=BF,且,(如圖2),則是 三角形,且.(3)若將(2)中的繞點B旋轉(zhuǎn)一定角度,(如同3),其他條件不變,那么(2)中的結(jié)論是否成立?若成立,
2025-03-24 12:34
【總結(jié)】幾何證明練習題及答案【知識要點】,并能夠熟練應(yīng)用;;,能夠應(yīng)用綜合法熟練地證明幾何命題。【概念回顧】:對應(yīng)邊(),對應(yīng)角()對應(yīng)高線(),對應(yīng)中線(),對應(yīng)角的角平分線()?!鰽BC中,∠C=90°,∠A=30°,則BC:AC:AB=()?!纠}解析】【題1】已知
2025-06-23 18:44
【總結(jié)】第一篇:《平行線的判定》證明題 《平行線的判定》證明題 1.如圖,當∠1=∠2時,直線a、b平行嗎,為什么? 2.如圖,已知∠ABC=∠BCD,∠ABC+∠CDG=180°,求證:BC∥GD. ...
2024-10-20 20:05
【總結(jié)】《平行線的判定》證明題1.如圖,當∠1=∠2時,直線a、b平行嗎,為什么?2.如圖,已知∠ABC=∠BCD,∠ABC+∠CDG=180°,求證:BC∥GD.3.如圖,已知AC⊥AE,BD⊥BF,∠1=15°,∠2=15°,AE與BF平行嗎?為什么?4.如圖,BE平分∠ABD,DE平分∠BDC,且∠1+
2025-03-25 01:20
【總結(jié)】談?wù)劺窭嗜罩兄刀ɡ淼淖C明引言眾所周至拉格朗日中值定理是幾個中值定理中最重要的一個,是微分學應(yīng)用的橋梁,在高等數(shù)學的一些理論推導(dǎo)中起著很重要的作用.研究拉格朗日中值定理的證明方法,力求正確地理解和掌握它,是十分必要的.拉格朗日中值定理證明的關(guān)鍵在于引入適當?shù)妮o助函數(shù).實際上,能用來證明拉格朗日中值定理的輔助函數(shù)有無數(shù)個,因此如果以引入輔助
2025-03-26 03:58
【總結(jié)】第一篇:談初中幾何證明題的入門 談初中幾何證明題的入門 l初一了,學生開始從實驗幾何向論證幾何過渡。在之前,雖然學過一部分,但沒有格式上的特殊要求,只要能看懂圖形,根據(jù)圖形回答問題,也就是說初一是...
2024-11-03 22:01
【總結(jié)】考點3與勾股定理有關(guān)的證明題,已知在△ABC中,∠C=90°,D為AC上一點,AB2-BD2與AC2-DC2有怎樣的關(guān)系?試證明你的結(jié)論。證明:在Rt△ABC中,AB2=AC2+BC2在Rt△DBC中,BD2=DC2+BC2∴BC2=AB2—AC2BC2=BD2—D
2025-07-26 12:21
【總結(jié)】第一篇:很好的平行線證明題 1.如圖,EF∥AD,∠1=∠2,∠BAC=70°.將求∠AGD的過程填寫 完整. ∵EF∥AD() ∴∠2=.() 又∵∠1=∠2,() ∴∠1=∠3.() ...
2024-10-25 17:49
【總結(jié)】第一篇:中考幾何證明題復(fù)習 中考復(fù)習 (二)中考復(fù)習:幾何證明題 說明一:在直角三角形中,或是題中出現(xiàn)多個直角時,要證明兩個角相等,涉及到的知識點: 同角(或等角)的余角相等。 例1:已知:...
2025-10-06 17:33
【總結(jié)】切線的證明與計算1、(2010福建德化)如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的圓O與AD、AC分別交于點E、F,且∠ACB=∠DCE.(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;(2)若AB=3,BC=4,DE=DC,求⊙O的半徑.2.(2010年北京崇文區(qū))如圖,是半圓的直徑,過
2025-03-25 00:00
【總結(jié)】線面垂直判定1、已知:如圖,PA⊥AB,PA⊥AC。求證:PA⊥平面ABC。2、已知:如圖,PA⊥AB,BC⊥平面PAC。求證:PA⊥BC。3、如圖,在三棱錐V-ABC中,VA=VC,AB=BC。求證:VBAC4、在正方體ABCD-EFGH中,O為底面ABCD中心。求證:BD平面AEGC
2025-03-25 07:09