【總結(jié)】第一篇:幾何證明題方法 (初中、高中)幾何證明題一些技巧 初中幾何證明技巧(分類) 證明兩線段相等 。 。 。 。 。 。 。 。*(或等圓)中等弧所對(duì)的弦或與圓心等距的兩弦或等...
2024-10-27 15:56
【總結(jié)】第一篇:中考數(shù)學(xué)證明題 中考數(shù)學(xué)證明題 O是已知線段AB上的一點(diǎn),以O(shè)B為半徑的圓O交AB于點(diǎn)C,以線段AO為直徑的半圓圓o于點(diǎn)D,過(guò)點(diǎn)B作AB的垂線與AD的延長(zhǎng)線交于點(diǎn)E (1)說(shuō)明AE切圓o...
2024-10-28 23:51
【總結(jié)】平行線與相交線的證明專題訓(xùn)練第1頁(yè)共8頁(yè)襄陽(yáng)市第四十七中學(xué)七年級(jí)數(shù)學(xué)組?321DCBA證明題專項(xiàng)1如圖,已知AB∥CD,
2025-03-25 01:20
【總結(jié)】考點(diǎn)3與勾股定理有關(guān)的證明題,已知在△ABC中,∠C=90°,D為AC上一點(diǎn),AB2-BD2與AC2-DC2有怎樣的關(guān)系?試證明你的結(jié)論。證明:在Rt△ABC中,AB2=AC2+BC2在Rt△DBC中,BD2=DC2+BC2∴BC2=AB2—AC2BC2=BD2—D
2025-07-26 12:21
【總結(jié)】第一篇:數(shù)學(xué)證明題證明方法 數(shù)學(xué)證明題證明方法(轉(zhuǎn)) 2011-04-2221:36:39|分類:|標(biāo)簽:|字號(hào)大中小訂閱 2011/04/2 2從命題的題設(shè)出發(fā),經(jīng)過(guò)逐步推理,來(lái)判斷命題的結(jié)...
2024-10-24 23:45
【總結(jié)】第一篇:線面平行與垂直的證明題 勤志數(shù)學(xué) 線面平行與垂直的證明 1:如圖,在棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中.(1)求證:AC⊥平面B1BDD1; (2)求三棱錐B-ACB1體積....
2024-10-28 15:23
【總結(jié)】幾何證明、B、C在同一直線上,在直線AC的同側(cè)作和,連接AF,CE.取AF、CE的中點(diǎn)M、N,連接BM,BN,MN.(1)若和是等腰直角三角形,且(如圖1),則是 三角形.(2)在和中,若BA=BE,BC=BF,且,(如圖2),則是 三角形,且.(3)若將(2)中的繞點(diǎn)B旋轉(zhuǎn)一定角度,(如同3),其他條件不變,那么(2)中的結(jié)論是否成立?若成立,
2025-03-24 12:34
【總結(jié)】菱形的判定證明題練習(xí)1如圖,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于點(diǎn)E.求證:四邊形AECD是菱形.2已知:如圖,在中,AE是BC邊上的高,將沿方向平移,使點(diǎn)E與點(diǎn)C重合,得.(1)求證:;ADGCBFE(2)若,當(dāng)A
2025-03-25 07:35
【總結(jié)】幾何證明練習(xí)題及答案【知識(shí)要點(diǎn)】,并能夠熟練應(yīng)用;;,能夠應(yīng)用綜合法熟練地證明幾何命題。【概念回顧】:對(duì)應(yīng)邊(),對(duì)應(yīng)角()對(duì)應(yīng)高線(),對(duì)應(yīng)中線(),對(duì)應(yīng)角的角平分線()?!鰽BC中,∠C=90°,∠A=30°,則BC:AC:AB=()。【例題解析】【題1】已知
2025-06-23 18:44
【總結(jié)】做幾何證明題方法歸納做幾何證明題方法歸納知識(shí)歸納:1.幾何證明是平面幾何中的一個(gè)重要問(wèn)題,它對(duì)培養(yǎng)學(xué)生邏輯思維能力有著很大作用。幾何證明有兩種基本類型:一是平面圖形的數(shù)量關(guān)系;二是有關(guān)平面圖形的位置關(guān)系。這兩類問(wèn)題常??梢韵嗷マD(zhuǎn)化,如證明平行關(guān)系可轉(zhuǎn)化為證明角等或角互補(bǔ)的問(wèn)題。2.掌握分析、證明幾何問(wèn)題的常用方法:(1)綜合法(由因?qū)Ч瑥囊阎獥l件出發(fā),
2025-03-24 07:18
【總結(jié)】第一篇:中考幾何證明題復(fù)習(xí) 中考復(fù)習(xí) (二)中考復(fù)習(xí):幾何證明題 說(shuō)明一:在直角三角形中,或是題中出現(xiàn)多個(gè)直角時(shí),要證明兩個(gè)角相等,涉及到的知識(shí)點(diǎn): 同角(或等角)的余角相等。 例1:已知:...
2025-10-06 17:33
【總結(jié)】第一篇:初中數(shù)學(xué)的證明題 初中數(shù)學(xué)的證明題 在△ABC中,AB=AC,D在AB上,E在AC的延長(zhǎng)線上,且BD=CE,線段DE交BC于點(diǎn)F,說(shuō)明:DF=EF。對(duì)不起啊我不知道怎么把畫(huà)的圖弄上來(lái)所以可...
2024-10-29 01:55
【總結(jié)】1.(本題10分)如圖,已知:ABCD中,的平分線交邊于,的平分線交于,交于.求證:.ABCDEFG2.在正方形ABCD中,AC為對(duì)角線,E為AC上一點(diǎn),連接EB、ED.(1)求證:△BEC≌△DEC;AFDEBC(2)延長(zhǎng)BE交AD于F,當(dāng)∠BED=120°時(shí),
2025-04-04 03:51
【總結(jié)】線面垂直判定1、已知:如圖,PA⊥AB,PA⊥AC。求證:PA⊥平面ABC。2、已知:如圖,PA⊥AB,BC⊥平面PAC。求證:PA⊥BC。3、如圖,在三棱錐V-ABC中,VA=VC,AB=BC。求證:VBAC4、在正方體ABCD-EFGH中,O為底面ABCD中心。求證:BD平面AEGC
2025-03-25 07:09
【總結(jié)】第一篇:初二幾何證明題 1如圖,在△ABC中,D是BC邊上的一點(diǎn),E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于F,且AF=DCCF.(1)求證:D是BC的中點(diǎn);(2)如果AB=ACADCF的...
2024-10-21 22:41