【總結(jié)】第三章矩陣的運(yùn)算?矩陣運(yùn)算?特殊矩陣?逆矩陣?分塊矩陣?初等矩陣?矩陣的秩111112121121212222221122nnnnmmmmmnmnababababababABababab???
2025-08-01 17:43
【總結(jié)】幾何與代數(shù)主講:王小六海報(bào)講座內(nèi)容:如何學(xué)好《幾何與代數(shù)》演講人:陳建龍教授(博導(dǎo))時(shí)間:11月2日(下周一)晚6:30地點(diǎn):教一311第二章矩陣第五節(jié)初等矩陣第二章矩陣§初等矩陣
2025-02-20 05:20
【總結(jié)】跳轉(zhuǎn)到第一頁1第二章矩陣§矩陣定義及其運(yùn)算§逆矩陣§矩陣的初等變換與初等矩陣§分塊矩陣§矩陣的秩跳轉(zhuǎn)到第一頁2第二章矩陣矩陣(2)-1a§矩陣定義跳轉(zhuǎn)到第一頁3111
2025-07-24 03:01
【總結(jié)】EXCEL的矩陣運(yùn)算例:x=(ATA)-1ATb已知資料(結(jié)果)位置選擇『函數(shù)類別』及『函數(shù)名稱』(可利用『說明』來查“MMULT”的詳細(xì)用法),輸入“TRANSPOSE(“因?yàn)锳T是一反矩陣,必須先用反矩陣功能轉(zhuǎn)換,以選擇矩陣範(fàn)圍(也可以直接輸入)。.A範(fàn)圍
2025-10-09 02:56
【總結(jié)】山東財(cái)經(jīng)大學(xué)數(shù)學(xué)與數(shù)量經(jīng)濟(jì)學(xué)院相似矩陣的概念§相似矩陣矩陣的相似關(guān)系的性質(zhì):;~:)1(AA反身性;~,~:)2(ABBA則若對(duì)稱性.~,~,~:)3(CACBBA則若傳遞性.~:,,,,1BABABAPPPnnBA記作相似與則稱使階可逆矩陣若存在階矩陣都是與設(shè)??定義山東財(cái)經(jīng)大學(xué)數(shù)學(xué)與數(shù)
2025-10-09 18:08
【總結(jié)】畢業(yè)設(shè)計(jì)說明書題目:雙級(jí)矩陣變換器容錯(cuò)控制策略學(xué)院:信息工程學(xué)院專業(yè):自動(dòng)化學(xué)號(hào):姓名:指導(dǎo)教師:完成日期:畢業(yè)論文(設(shè)計(jì))任務(wù)書論文(設(shè)計(jì))題目:
2025-06-23 08:39
【總結(jié)】1幾個(gè)初等函數(shù)的映照二、冪函數(shù)一、指數(shù)與對(duì)數(shù)函數(shù)三、儒可夫斯基函數(shù)四、小結(jié)與思考2一、指數(shù)與對(duì)數(shù)函數(shù)zew?)(???zew因?yàn)?,??iewiyxz???設(shè),,yex????那末平面z平面wzew?wzln?,0??ze.的共形映射平面上所構(gòu)成的映射是一個(gè)全所以由zew
2025-10-03 16:28
【總結(jié)】第四章初等函數(shù)的導(dǎo)數(shù)與積分4-1對(duì)數(shù)函數(shù)的導(dǎo)數(shù)與積分4-2指數(shù)函數(shù)的導(dǎo)數(shù)與積分4-3三角函數(shù)的導(dǎo)數(shù)與積分1.對(duì)數(shù)2.對(duì)數(shù)微分3.對(duì)數(shù)函數(shù)的積分4-1對(duì)數(shù)函數(shù)的導(dǎo)數(shù)與積分對(duì)數(shù)在對(duì)數(shù)函數(shù)f(x)=logax中:(1)若底數(shù)a=10,我們稱其為常用對(duì)數(shù)函數(shù),
2025-07-21 19:54
【總結(jié)】學(xué)習(xí)目標(biāo):;、伸壓、反射、旋轉(zhuǎn)、投影、切變變換的矩陣表示及其幾何意義;,往往將直線變成直線或點(diǎn)。(單位矩陣)溫故知新???????1001E恒等變換是指對(duì)平面上任何一點(diǎn)(向量)或圖形施以矩陣對(duì)應(yīng)的變換,都把自己變?yōu)樽约???????10
2025-08-05 06:19
【總結(jié)】南京信息工程大學(xué)離散數(shù)學(xué)教學(xué)組制作離散數(shù)學(xué)電子課件第八章圖論圖的基本概念路徑和回路圖的矩陣表示二部圖平面圖樹有向樹圖的矩陣表示1.鄰接矩陣2.可達(dá)性矩陣3.可達(dá)性矩陣的應(yīng)用4.關(guān)聯(lián)
2025-05-06 23:18
【總結(jié)】矩陣秩的三個(gè)應(yīng)用?應(yīng)用1、可逆方陣的判定?一個(gè)n*n方陣A可逆的充要條件是R(A)=n.因?yàn)椋阎狝可逆的充要條件為|A|≠0。根據(jù)秩的定義,這與秩為非零子式的最高階數(shù)是相吻合的。所以,方陣A可逆的充要條件是R(A)=n.?初等變換不改變矩陣的秩,由此可推出,當(dāng)B、C為與A同階的
2025-08-05 20:04
【總結(jié)】高等院校非數(shù)學(xué)類本科數(shù)學(xué)課程——一元微積分學(xué)大學(xué)數(shù)學(xué)(一)第二講初等函數(shù)及數(shù)列極限的概念一、基本初等函數(shù)大家在中學(xué)就已熟悉它們了!以下六種簡(jiǎn)單函數(shù)稱為基本初等函數(shù)1.常值函數(shù)y=C(C為常數(shù))2.冪函數(shù)y=
2025-05-13 00:43
【總結(jié)】矩陣的逆第一章(H)(H)矩陣的逆逆矩陣的概念和性質(zhì)定義對(duì)于階矩,如果有一個(gè)階矩陣則說矩陣是可逆的,并把矩陣稱為的逆矩陣.nAB,EBAAB??BAnA,使得.1?AA的逆矩陣記作例設(shè),21212121,1111
2025-03-22 05:57
【總結(jié)】方陣與其伴隨矩陣的關(guān)系摘要本文給出了階方陣的伴隨矩陣的定義,討論了階方陣與其伴隨矩陣之間的關(guān)系,例如與之間的關(guān)系,并且給出了相應(yīng)的證明過程.關(guān)鍵詞矩陣、伴隨矩陣、關(guān)系、證明在高等代數(shù)課程中我們學(xué)習(xí)了矩陣,伴隨矩陣。它們之間有很好的聯(lián)系,對(duì)我們以后的學(xué)習(xí)中有很大的用處。1.伴隨矩陣的定義.設(shè)階方陣.令,.2.矩陣與其伴隨矩陣的關(guān)系及其證明
2025-06-25 14:08
【總結(jié)】目錄摘要..............................................................................................................................1Abstract................................................
2024-12-03 18:29