【總結(jié)】《排列組合的綜合運(yùn)用》練習(xí)題一、選擇題:1.()A.70B.58C.56D.24,要求身高最高的在中間,且往兩邊身高依次遞減,則不同的排法有()A.18種B.20種
2025-06-19 08:47
【總結(jié)】高二數(shù)學(xué)排列與組合練習(xí)題黎崗排列練習(xí)1、將3個不同的小球放入4個盒子中,則不同放法種數(shù)有()A、81B、64C、12D、14 2、n∈N且n55,則乘積(55-n)(56-n)……(69-n)等于()A、B、C、D、 3、用1,2,3,4四個數(shù)字可以組成數(shù)字不重復(fù)的自然數(shù)的個數(shù)()A
2025-08-05 18:22
【總結(jié)】排列組合教案(加法原理)完成一件事,有類辦法,在第1類辦法中有種不同的方法,在第2類辦法中有種不同的方法,…,在第類辦法中有種不同的方法,那么完成這件事共有:種不同的方法.例:,一名高中畢業(yè)生了解到,在A大學(xué)里有4種他所感興趣的專業(yè),在B大學(xué)里有5種感興趣的專業(yè),如果這名學(xué)生只能選擇一個專業(yè),那么他共有多少種選擇?,有5人只會用第一種方法完成,另有4人只會用第二種方法
2025-08-05 06:55
【總結(jié)】例1)...1)(1)(...1()(425xxxxxxxg?????????解其中展開式的一般項(xiàng)為,321nrrrxxxx?40,20,50,321321?????????rrrnrrr是什么數(shù)列的生成函數(shù)?.數(shù)解的個數(shù)恰為上述方程的非負(fù)整的系數(shù)nnhx的生成函數(shù)。的個數(shù)上述方程的非負(fù)整數(shù)解是所以,nhx
2025-05-12 17:10
【總結(jié)】排列組合應(yīng)用題數(shù)學(xué)教研組盛建芳復(fù)習(xí)回顧??!!!!mmnnPnCmmnm???1、排列??????????121121!mnnnPnnnnmPnnnn??????????????
2025-08-15 23:43
【總結(jié)】思銳精英教育排列組合典型題大全一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學(xué)生報名參加數(shù)學(xué)、物理、化學(xué)競賽,每人限報一科,有多少種不同的報名方法?(2)有4
2025-06-25 23:10
【總結(jié)】完美WORD格式《排列組合》一、排列與組合,有多少種不同選法?,1人下鄉(xiāng)演出,1人在本地演出,有多少種不同選派方法?3.現(xiàn)從男、女8名學(xué)生干部中選出2名男同學(xué)和1名女同學(xué)分別參加全?!百Y源”、“生態(tài)”和“環(huán)?!比齻€夏令營活動,已知共有90種不同的方案,那么男、女同
2025-06-25 22:56
【總結(jié)】排列組合復(fù)習(xí)二、重點(diǎn)難點(diǎn)三、綜合練習(xí)四、復(fù)習(xí)建議一、知識結(jié)構(gòu)基本原理組合排列排列數(shù)公式組合數(shù)公式組合數(shù)性質(zhì)應(yīng)用問題一、知識結(jié)構(gòu)二、重點(diǎn)難點(diǎn)1.兩個基本原理
2024-11-18 00:34
【總結(jié)】排列組合高考試題精選(二)1、五人并排站成一排,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有()A、60種B、48種C、36種D、24種2、七人并排站成一行,如果甲乙兩個必須不相鄰,那么不同的排法種數(shù)是()A、1440種B、3600種C、4820種D、4800種3、將數(shù)字1,2,3
2025-06-25 22:54
2025-06-25 23:00
【總結(jié)】一,映射與排列組合問題變式:同(2)257對集合A中元素進(jìn)行分類。二,排列組合中的映射思維通過集合A與另一個集合B之間的映射關(guān)系,將對集合A中元素的計數(shù)問題轉(zhuǎn)化為對集合B的計數(shù)。且A與B是一一對應(yīng)關(guān)系。三,構(gòu)造法解排列組合題例6,有若干名棋手參加的單循環(huán)制象棋比賽,其中有2名棋手各比賽
2024-11-10 03:08
【總結(jié)】例“歡樂今宵”節(jié)目中,拿出兩個信箱.其中存放著先后兩次競猜中成績優(yōu)秀的觀眾來信.甲信箱中有30封,乙信箱中有20封.現(xiàn)由主持人抽獎確定幸運(yùn)觀眾,若先確定一名“幸運(yùn)之星”,然后再從兩信箱中各確定一名幸運(yùn)伙伴,有多少種不同的結(jié)果?練習(xí).如圖,一個地區(qū)分為5個行政區(qū)域,現(xiàn)給地圖著色,要求相鄰區(qū)域不得使用同一種
2024-11-09 06:20
【總結(jié)】排列組合常見題型及解題策略一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學(xué)生報名參加數(shù)學(xué)、物理、化學(xué)競賽,每人限報一科,有多少種不同的報名方法?(2)有4名學(xué)生參加爭奪數(shù)學(xué)、
2025-08-04 18:28
【總結(jié)】排列組合復(fù)習(xí)課教學(xué)設(shè)計------龍巖二中郭小峰排列組合復(fù)習(xí)課一.教學(xué)內(nèi)容分析:、組合都是研究事物在某種給定的模式下所有可能的配置的數(shù)目問題,它們之間的主要區(qū)別在于是否要考慮選出元素的先后順序,不需要考慮順序的是組合問題,需要考慮順序的是排列問題,排列是在組合的基礎(chǔ)上對入選的元素進(jìn)行排隊(duì),因此,分析解決排列組合問題的基本思維是“先組,后排”.,要注意四點(diǎn):(1)
2025-05-01 04:21
【總結(jié)】.公式P是指排列,從N個元素取R個進(jìn)行排列。公式C是指組合,從N個元素取R個,不進(jìn)行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數(shù)r個,表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-26 05:35