【摘要】排列組合常見題型及解題策略一.可重復的排列求冪法:重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復,把不能重復的元素看作“客”,能重復的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關鍵是在正確判斷哪個底數,哪個是指數【例1】(1)有4名學生報名參加數學、物理、化學競賽,每人限報一科,有多少種不同的報名方法?(2)有4名學生參加爭奪數學、
2025-08-04 18:28
【摘要】排列組合復習課教學設計------龍巖二中郭小峰排列組合復習課一.教學內容分析:、組合都是研究事物在某種給定的模式下所有可能的配置的數目問題,它們之間的主要區(qū)別在于是否要考慮選出元素的先后順序,不需要考慮順序的是組合問題,需要考慮順序的是排列問題,排列是在組合的基礎上對入選的元素進行排隊,因此,分析解決排列組合問題的基本思維是“先組,后排”.,要注意四點:(1)
2025-05-01 04:21
【摘要】.公式P是指排列,從N個元素取R個進行排列。公式C是指組合,從N個元素取R個,不進行排列。N-元素的總個數R參與選擇的元素個數!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數r個,表達式應該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-26 05:35
【摘要】排列組合綜合問題教學目標通過教學,學生在進一步加深對排列、組合意義理解的基礎上,掌握有關排列、組合綜合題的基本解法,提高分析問題和解決問題的能力,學會分類討論的思想.教學重點與難點重點:排列、組合綜合題的解法.難點:正確的分類、分步.教學用具投影儀.教學過程設計(一)引入師:現在我們大家已經學習和掌握了一些排列問題和組
2025-03-25 02:37
【摘要】排列組合試題精選一、選擇題1、如圖,是中國西安世界園藝博覽會某區(qū)域的綠化美化示意圖,其中A、B、C、D是被劃分的四個區(qū)域,現有6種不同顏色的花,要求每個區(qū)域只能栽同一種花,允許同一顏色的花可以栽在不同的區(qū)域,但相鄰的區(qū)域不能栽同一色花,則不同的栽種方法共有(???)種。A.120?????
【摘要】排列組合基礎知識及習題分析在介紹排列組合方法之前我們先來了解一下基本的運算公式!C5取3=(5×4×3)/(3×2×1)C6取2=(6×5)/(2×1)通過這2個例子看出CM取N公式是種子數M開始與自身連續(xù)的N個自然數的降序乘積做為分子。以取值N的階層作為分母P53=5×4
2025-06-25 23:11
【摘要】排列組合復習學案1重復排列“求冪運算”重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復。把不能重復的元素看作“客”,能重復的元素看作“店”,則通過“住店法”可順利解題。例18名同學爭奪3項冠軍,獲得冠軍的可能性有()2.特殊元素(位置)用優(yōu)先法:把有限制條件的元素(位置)稱為特殊元素(位置),可優(yōu)先將它(們)安排好,后再安排其它元素。
2025-04-17 01:31
【摘要】12除做到:排列組合分清,加乘原理辯明,避免重復遺漏外,還應注意積累排列組合問題得以快速準確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個數字組成無重復的四位數,試求滿足下列條件的四位數各有多少個(1)數字1不排在個位和千位(2)數字1不在個位,數字6不在千位。分析:(1)個位和千位有5個數字可供選擇,其余2位有四個可供選擇,由乘法原理:=240
2025-03-25 02:36
【摘要】數學補差(4)———計數原理1.將個不同的小球放入個盒子中,則不同放法種數有A.B.C.D.2.個人排成一排,其中甲、乙兩人至少有一人在兩端的排法種數有A.B.C.D.3.共個人,從中選1名組長1名副組長,但不能當副組長,不同的選法總數是A.B.C.D.4.現有男、女學生共人,從男生中選
2025-06-25 22:57
【摘要】完美WORD格式《排列組合》一、排列與組合,有多少種不同選法?,1人下鄉(xiāng)演出,1人在本地演出,有多少種不同選派方法?3.現從男、女8名學生干部中選出2名男同學和1名女同學分別參加全校“資源”、“生態(tài)”和“環(huán)保”三個夏令營活動,已知共有90種不同的方案,那么男、女同
2025-08-05 07:32
【摘要】排列組合排列定義???從n個不同的元素中,取r個不重復的元素,按次序排列,稱為從n個中取r個的無重排列。排列的全體組成的集合用P(n,r)表示。排列的個數用P(n,r)表示。當r=n時稱為全排列。一般不說可重即無重??芍嘏帕械南鄳浱枮镻(n,r),P(n,r)。組合定義從n個不同元素中取r個不重復的元素組成一個子集,而不考慮其元素的順序,稱
2025-06-25 23:09
【摘要】主題課題:兩個原理和排列知識內容:1、分類計數原理和分步計數原理2、排列、排列數概念3、排列數的計算公式4.排列應用題能力目標:1、通過兩個原理的學習,培養(yǎng)學生的解決實際問題的能力;2、通過排列的學習,可以遷移知識,更好的運用兩個原理,并能解決稍復雜的數學問題。3、培養(yǎng)學生的分析問題能力、解決問題的能力。數學思想:轉化思想
【摘要】人教版高中數學全部教案兩個基本原理一、教學目標1、知識傳授目標:正確理解和掌握加法原理和乘法原理2、能力培養(yǎng)目標:能準確地應用它們分析和解決一些簡單的問題3、思想教育目標:發(fā)展學生的思維能力,培養(yǎng)學生分析問題和解決問題的能力二、教材分析:加法原理,乘法原理。解決方法:利用簡單的舉例得到一般的結論.:加法原理,乘法原理的區(qū)分。解決方法:運用對比的方法比
2025-04-16 13:29
【摘要】回顧引入:前面我們已經學習和掌握了排列組合問題的求解方法,下面我們要在復習、鞏固已掌握的方法的基礎上,學習和討論排列、組合的綜合問題和應用問題。問題:解決排列組合問題一般有哪些方法?應注意什么問題?解排列組合問題時,當問題分成互斥各類時,根據加法原理,可用分類法;當問題考慮先后次序時,根據乘法
2025-08-05 16:06
【摘要】二項式定理歷年高考試題薈萃(三)一、填空題(本大題共24題,共計102分)1、(1+2x)5的展開式中x2的系數是________.(用數字作答)2、的展開式中的第5項為常數項,那么正整數的值是??????????.3、已知,則(的值等于?
2025-07-26 08:16