【總結】第二節(jié)平面向量的基本定理及坐標表示基礎梳理(1)平面向量基本定理定理:如果e1,e2是同一平面內(nèi)的兩個的向量,那么對于這一平面內(nèi)的任意向量a,一對實數(shù)λ1,λ2,使a=.其中
2025-11-03 16:44
【總結】課題平面向量基本定理教學目標知識與技能理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義過程與方法在平面內(nèi),當一組基底選定后,會用這組基底來表示其他向量情感態(tài)度價值觀啟發(fā)引導,講練結合重點會應用平面向量基本定理解決有關平面向量的綜合問題難點同上教學設
2024-11-19 20:38
【總結】 平面向量基本定理[學習目標] ,,當一組基底選定后,.知識點一 平面向量基本定理(1)定理:如果e1,e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量a,有且只有一對實數(shù)λ1,λ2,使a=λ1e1+λ2e2.(2)基底:把不共線的向量e1,e2叫做表示這一平面內(nèi)所有向量的一組基底.思考 如圖所示,e1,e2是兩個不共線的向量,試用e1,e2表示向量,,,,
2025-06-19 18:18
【總結】第一篇:平面向量基本定理及相關練習(含答案) 平面向量2預習: :已知非零向量a和b,作OA=a,OB=b,則DAOB=q(0£q£p)叫做向量a和b的夾角。 (1)q=0時,a和b同向;(2)...
2025-11-06 04:03
【總結】§2.平面向量的基本定理【學習目標、細解考綱】;.【知識梳理、雙基再現(xiàn)】:如果1e?,2e?是同一平面內(nèi)兩個的向量,a?是這一平面內(nèi)的任一向量,那么有且只有一對實數(shù),21,??使。其中,不共線的這兩個向量,1e?2e?叫做表示這一平
2024-11-30 13:51
【總結】平面向量基本定理常用題型歸納何樹衡劉建一平面向量基本定理:如果是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且僅有一對實數(shù)使得=平面向量基本定理是正交分解和坐標表示的基礎,它為“數(shù)”和“形”搭起了橋梁,,認為大致分為以下題型:一、基本題型隨處可見例1:在直角坐標平面上,已知O是原點,,若,求實數(shù)x,y的值解: ∴ 即x為-3,y為3
2025-03-25 01:38
【總結】第2節(jié)平面向量基本定理及其坐標表示(對應學生用書第61~62頁)1.向量的夾角(1)定義:已知兩個非零向量a和b,如圖,作OA―→=a,OB―→=b,則∠AOB=θ叫做向量a與b的夾角,也可記作〈a,b〉=θ.(2)范圍:向量夾角θ的范圍是[0,π],a與b同向時,夾角θ
2025-11-03 01:35
【總結】第二節(jié)平面向量基本定理及坐標表示分析不易直接用c,d表示,所以可以先由聯(lián)合表示,再進行向量的線性運算,從方程中解出??DABA,??DABA,??NAMA,??DABA,解
【總結】平面向量基本定理考查知識點及角度難易度及題號基礎中檔稍難基底及用基底表示向量1、36、8、9向量夾角問題2、4綜合問題57、10111.已知e1和e2是表示平面內(nèi)所有向量的一組基底,那么下面四組向量中不能作為一組基底的是()A.e1和e1+e2B.e
2024-11-19 19:36
【總結】關于《平面向量基本定理》的效果分析一、效果總評本節(jié)課運用了“合作探究、分層推進教學法”,使學生在個人自主學習、小組合作探究、全班互相交流、教師點評總結的交互推動下,主動學習,積極參與,全面合作,廣泛交流。教師營造了民主、平等、互動、開放的學習、交流氛圍,較好地發(fā)揮了促進者、指導者和合作者的作用,引領學生通過對各類有層次的問題的思考、探究、交流、解
【總結】平面向量基本定理學習目標:1.理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義.2.在平面內(nèi),當一組基底選定后,會用這組基底來表示其他向量.3.會應用平面向量基本定理解決有關平面向量的綜合問題.學習重點:會應用平面向量基本定理解決有關平面向量的綜合問題學習難點:會應用平面向量基本定理解決有關平面向量的
【總結】平面向量基本定理1.設O點是平行四邊形ABCD兩對角線的交點,下列向量組中可作為這個平行四邊形所在平面上表示其他所有向量的基底的是()①AD→與AB→;②DA→與BC→;③CA→與DC→;④OD→與OB→.A.①②B.①③C.①④D.③④解析:只要是平面上不共線的兩個向量
【總結】關于《平面向量基本定理》的課后反思當前,新課程的改革與素質(zhì)教育工作已全面展開,它對教育、教學不斷提出更新、更高的要求,而課堂教學是教育教學的主陣地,那種以老師講解為主,使學生常常處于消極、被動、受壓抑的狀態(tài),既不能充分地調(diào)動學生的主動性、積極性,又不能很好地培養(yǎng)學生的各方面能力的傳統(tǒng)灌輸教學法與新課程的改革理念及“以學生為本”的教學思想已是格格不入。所以課堂教學
【總結】......1.若不給自己設限,則人生中就沒有限制你發(fā)揮的藩籬。2.若不是心寬似海,哪有人生風平浪靜。在紛雜的塵世里,為自己留下一片純靜的心靈空間,不管是潮起潮落,也不管是陰晴圓缺,你都可以免去浮躁,義無反顧,勇往直前,輕松自如地走好人生路上
2025-07-20 14:28
【總結】 平面向量的概念及其線性運算1.向量的有關概念名稱定義備注平行向量方向相同或相反的非零向量0與任一向量平行或共線共線向量方向相同或相反的非零向量又叫做共線向量相等向量長度相等且方向相同的向量兩向量只有相等或不等,不能比較大小相反向量長度相等且方向相反的向量0的相反向量為0向量運算定 義法則(或幾何意義)運算律