【總結(jié)】(§文)(§)圓錐曲線的綜合問題知識(shí)要點(diǎn)梳理解析幾何是聯(lián)系初等數(shù)學(xué)與高等數(shù)學(xué)的紐帶,它本身側(cè)重于形象思維、推理運(yùn)算和數(shù)形結(jié)合,綜合了代數(shù)、三角、幾何、向量等知識(shí).圓錐曲線與方程是中學(xué)數(shù)學(xué)的重點(diǎn)和難點(diǎn),它可以和中學(xué)數(shù)學(xué)中的其他章節(jié)知識(shí)進(jìn)行交匯,充分體現(xiàn)了中學(xué)中的各種數(shù)學(xué)思想與數(shù)學(xué)技能。無論是基礎(chǔ)題還是難題都可以將分析問題與解決問題的能力淋漓盡致地反映出來。因
2025-03-24 04:06
【總結(jié)】:★★★★★知能梳理【橢圓】一、橢圓的定義1、橢圓的第一定義:平面內(nèi)一個(gè)動(dòng)點(diǎn)到兩個(gè)定點(diǎn)、的距離之和等于常數(shù),這個(gè)動(dòng)點(diǎn)的軌跡叫橢圓。這兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫作橢圓的焦距。注意:若,則動(dòng)點(diǎn)的軌跡為線段;若,則動(dòng)點(diǎn)的軌跡無圖形。二、橢圓的方程1、橢圓的標(biāo)準(zhǔn)方程(端點(diǎn)為a、b,焦點(diǎn)為c)(1)當(dāng)焦點(diǎn)在軸上時(shí),橢圓的標(biāo)準(zhǔn)方程:,其中;(2)當(dāng)焦點(diǎn)
2025-05-31 08:15
【總結(jié)】四川大學(xué)家教協(xié)會(huì)圓錐曲線的方程與性質(zhì)1.橢圓(1)橢圓概念平面內(nèi)與兩個(gè)定點(diǎn)、的距離的和等于常數(shù)2(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離2c叫橢圓的焦距。若為橢圓上任意一點(diǎn),則有。橢圓的標(biāo)準(zhǔn)方程為:()(焦點(diǎn)在x軸上)或()(焦點(diǎn)在y軸上)。注:①以上方程中的大小,其中;②在和兩個(gè)方程中都有的條件,要分清焦點(diǎn)的位置,只要看和的分母的大小。
2025-06-23 07:21
【總結(jié)】圓錐曲線的方程與性質(zhì)1.橢圓(1)橢圓概念平面內(nèi)與兩個(gè)定點(diǎn)、的距離的和等于常數(shù)2(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離2c叫橢圓的焦距。若為橢圓上任意一點(diǎn),則有。橢圓的標(biāo)準(zhǔn)方程為:()(焦點(diǎn)在x軸上)或()(焦點(diǎn)在y軸上)。注:①以上方程中的大小,其中;②在和兩個(gè)方程中都有的條件,要分清焦點(diǎn)的位置,只要看和的分母的大小。例如橢圓(,,)當(dāng)時(shí)表示
2025-07-24 04:11
【總結(jié)】圓錐曲線的方程與性質(zhì)1.橢圓(1)橢圓概念平面內(nèi)與兩個(gè)定點(diǎn)、的距離的和等于常數(shù)2(大于)的點(diǎn)的軌跡叫做橢圓。這兩個(gè)定點(diǎn)叫做橢圓的焦點(diǎn),兩焦點(diǎn)的距離2c叫橢圓的焦距。若為橢圓上任意一點(diǎn),則有。橢圓的標(biāo)準(zhǔn)方程為:()(焦點(diǎn)在x軸上)或()(焦點(diǎn)在y軸上)。注:①以上方程中的大小,其中;②在和兩個(gè)方程中都有的條件,要分清焦點(diǎn)的位置,只要看和的分母的大小。例如橢圓(,,)
2025-05-31 12:09
【總結(jié)】高考數(shù)學(xué)圓錐曲線部分知識(shí)點(diǎn)梳理一、圓:1、定義:點(diǎn)集{M||OM|=r},其中定點(diǎn)O為圓心,定長(zhǎng)r為半徑.2、方程:(1)標(biāo)準(zhǔn)方程:圓心在c(a,b),半徑為r的圓方程是(x-a)2+(y-b)2=r2圓心在坐標(biāo)原點(diǎn),半徑為r的圓方程是x2+y2=r2(2)一般方程:①當(dāng)D2+E2-4F>0時(shí),一元二次方程x2+y2+Dx+Ey+F=0
2025-06-24 02:09
【總結(jié)】專題六圓錐曲線1.(重慶市南開中學(xué)20xx屆高三12月月考文)已知圓C與直線040xyxy?????及都相切,圓心在直線0xy??上,則圓C的方程為()A.22(1)(1)2xy????B.22(1)(1)2xy????C.22(1)(1)2xy??
2025-07-28 16:57
【總結(jié)】橢圓典例剖析知識(shí)點(diǎn)一 橢圓定義的應(yīng)用 方程+=1表示焦點(diǎn)在y軸上的橢圓,則m的取值范圍是________.解析:因?yàn)榻裹c(diǎn)在y軸上,所以16+m25-m,即m,又因?yàn)閎2=25-m0,故m25,所以m的取值范圍為m:m25知識(shí)點(diǎn)二 求橢圓的標(biāo)準(zhǔn)方程 求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:
2025-07-25 00:15
【總結(jié)】本資料從網(wǎng)上收集整理難點(diǎn)25圓錐曲線綜合題圓錐曲線的綜合問題包括:解析法的應(yīng)用,與圓錐曲線有關(guān)的定值問題、最值問題、參數(shù)問題、應(yīng)用題和探索性問題,圓錐曲線知識(shí)的縱向聯(lián)系,圓錐曲線知識(shí)和三角、復(fù)數(shù)等代數(shù)知識(shí)的橫向聯(lián)系,解答這部分試題,需要較強(qiáng)的代數(shù)運(yùn)算能力和圖形認(rèn)識(shí)能力,要能準(zhǔn)確地進(jìn)行數(shù)與形的語言轉(zhuǎn)換和運(yùn)算,推理轉(zhuǎn)換,并在運(yùn)算過程中注意思維的嚴(yán)密性,以保證結(jié)果的完整.●難點(diǎn)磁場(chǎng)
2025-06-07 23:43
【總結(jié)】雙曲線知識(shí)點(diǎn)一、雙曲線的定義:1.第一定義:到兩個(gè)定點(diǎn)F1與F2的距離之差的絕對(duì)值等于定長(zhǎng)(<|F1F2|)的點(diǎn)的軌跡((為常數(shù)))這兩個(gè)定點(diǎn)叫雙曲線的焦點(diǎn).要注意兩點(diǎn):(1)距離之差的絕對(duì)值.(2)2a<|F1F2|.當(dāng)|MF1|-
2025-07-25 00:12
【總結(jié)】知能梳理【橢圓】一、橢圓的定義1、橢圓的第一定義:平面內(nèi)一個(gè)動(dòng)點(diǎn)到兩個(gè)定點(diǎn)、的距離之和等于常數(shù),這個(gè)動(dòng)點(diǎn)的軌跡叫橢圓。這兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離叫作橢圓的焦距。注意:若,則動(dòng)點(diǎn)的軌跡為線段;若,則動(dòng)點(diǎn)的軌跡無圖形。二、橢圓的方程1、橢圓的標(biāo)準(zhǔn)方程(端點(diǎn)為a、b,焦點(diǎn)為c)(1)當(dāng)焦點(diǎn)在軸上時(shí),橢圓的標(biāo)準(zhǔn)方程:,其中;(2)當(dāng)焦點(diǎn)在軸上
【總結(jié)】......高考數(shù)學(xué)圓錐曲線部分知識(shí)點(diǎn)梳理1、方程的曲線:在平面直角坐標(biāo)系中,如果某曲線C(看作適合某種條件的點(diǎn)的集合或軌跡)上的點(diǎn)與一個(gè)二元方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這
2025-04-04 05:07
【總結(jié)】高中數(shù)學(xué)知識(shí)點(diǎn)大全—圓錐曲線一、考點(diǎn)(限考)概要:?1、橢圓:?(1)軌跡定義:??①定義一:在平面內(nèi)到兩定點(diǎn)的距離之和等于定長(zhǎng)的點(diǎn)的軌跡是橢圓,兩定點(diǎn)是焦點(diǎn),兩定點(diǎn)間距離是焦距,且定長(zhǎng)2a大于焦距2c。用集合表示為:;??②定義二:在平面內(nèi)到定點(diǎn)的距離和它到一條定直線的距離之比是個(gè)常數(shù)e,那么這個(gè)點(diǎn)的軌跡叫做
2025-07-23 13:06
【總結(jié)】完美WORD格式 課題:(第1課時(shí))【學(xué)習(xí)目標(biāo)】1、能從具體情境中抽象出橢圓的模型;2、理解橢圓的定義,會(huì)求橢圓的標(biāo)準(zhǔn)方程.【學(xué)習(xí)重點(diǎn)】1、理解橢圓的定義和標(biāo)準(zhǔn)方程;2、認(rèn)識(shí)橢圓標(biāo)準(zhǔn)方程的特征.【學(xué)法指導(dǎo)】1、帶著預(yù)習(xí)案中問
2025-07-24 10:09
【總結(jié)】高考數(shù)學(xué)圓錐曲線部分知識(shí)點(diǎn)梳理1、方程的曲線:在平面直角坐標(biāo)系中,如果某曲線(看作適合某種條件的點(diǎn)的集合或軌跡)上的點(diǎn)與一個(gè)二元方程的實(shí)數(shù)解建立了如下的關(guān)系:(1)曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解;(2)以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn),那么這個(gè)方程叫做曲線的方程;這條曲線叫做方程的曲線.點(diǎn)與曲線的關(guān)系:若曲線的方程是,則點(diǎn)在曲線上;點(diǎn)不在曲線上.兩條曲線的交
2025-04-04 05:08