【總結(jié)】. 一元二次不等式一、知識(shí)導(dǎo)學(xué)1.一元一次不等式與一次函數(shù)的關(guān)系對(duì)于不等式axb,(1)當(dāng)a0時(shí),解為___________;(2)當(dāng)a<0時(shí),解為____________(3)當(dāng)a=0,b≥0時(shí)___________;當(dāng)a=0,b<0時(shí),解為_______________.①作出的圖像,觀察>0,=0,<0的解與圖像的關(guān)系>0的解集
2025-08-05 04:16
【總結(jié)】指數(shù)、對(duì)數(shù)方程與不等式的解法注:以下式子中,若無(wú)特別說(shuō)明,均假設(shè)且.一、知識(shí)要點(diǎn):1、指數(shù)方程的解法:(1)同底去底法:;(2)化成對(duì)數(shù)式:;(3)取同底對(duì)數(shù):.2、對(duì)數(shù)方程的解法:(1)同底去底法:;(2)化成指數(shù)式:;(3)取同底指數(shù):.3、指數(shù)不等式的解法:(1)同底去底法:時(shí),;時(shí),;(2)化成對(duì)數(shù)式:時(shí),;
2025-06-25 17:04
【總結(jié)】無(wú)理不等式的解法基本概念1、無(wú)理不等式:2、無(wú)理不等式的類型:根號(hào)下含有未知數(shù)的不等式。0)()()4()()()3()()()2()()()1(?????xgxfxgxfxgxfxgxf根式不等式的解法-例1解不等式0343????xx解:原不等式可化為
2024-11-03 22:31
【總結(jié)】絕對(duì)值不等式課堂練習(xí):解不等式|3x-4|≤19類型一:或a0型延伸:例1解不等式|x2-5x+5|1?解:原不等式可轉(zhuǎn)化為-1x2-5x+51
2024-11-09 12:20
【總結(jié)】數(shù)學(xué)解題絕招1一、方法引入:1.數(shù)形結(jié)合法:(1)若f(x)=ax+b,x∈[α,β],則:f(x)0恒成立f(x)0恒成立
2025-07-26 12:19
【總結(jié)】-不等式的性質(zhì)及一元二次不等式的解法一、不等關(guān)系與不等式1、不等式的定義:用不等號(hào)(“≤”,“≥”,“<”,“>”,“≠”)表示不等關(guān)系的式子。用“<”,“>”連接的不等式叫嚴(yán)格不等式,用“≤”,“≥”連接的不等式叫非嚴(yán)格不等式。2、實(shí)數(shù)的特征和實(shí)數(shù)大小的比較(1)、特征:(1)任意實(shí)數(shù)的平方不小于0:即:∈R,則2≥0;(2)任意兩個(gè)實(shí)數(shù)都可以比較大小。3、實(shí)數(shù)比較
2025-04-16 12:51
【總結(jié)】學(xué)科:數(shù)學(xué)教學(xué)內(nèi)容:含絕對(duì)值不等式的解法【自學(xué)導(dǎo)引】1.絕對(duì)值的意義是:.2.|x|<a(a>0)的解集是{x|-a<x<a}.|x|>a(a>0)的解集是{x|x<-a或x>a}.【思考導(dǎo)學(xué)】1.|ax+b|<b(b>0)轉(zhuǎn)化成-b<ax+b<b的根據(jù)是什么?答:含絕對(duì)值的不等式|ax+b|<b轉(zhuǎn)化-b<ax+b<b的根據(jù)是由絕對(duì)值的意義
2025-06-19 08:34
【總結(jié)】不等式解法舉例(1)含絕對(duì)值的一元一次、一元二次不等式(組)的解法基本絕對(duì)值不等式的解集?不等式︱x︱0)的解集是{x︱-aa(a0)的解集是{x︱xa或x-a}.?嘗試:(1)︱x︱1
2024-10-17 03:43
【總結(jié)】不等式的基本性質(zhì)及解法適用學(xué)科高中數(shù)學(xué)適用年級(jí)高中三年級(jí)適用區(qū)域通用課時(shí)時(shí)長(zhǎng)(分鐘)120知識(shí)點(diǎn)不等式的基本性質(zhì)及定理、不等式的解法教學(xué)目標(biāo)..教學(xué)重點(diǎn).、分式不等式、高次不等式解法.教學(xué)難點(diǎn)..教學(xué)過(guò)程1、新課導(dǎo)入初中,我們學(xué)習(xí)了一元一次不等式(組);已經(jīng)掌握了不等式(組),我們將在過(guò)去已有
2025-07-24 12:57
【總結(jié)】無(wú)理不等式的解法基本概念1、無(wú)理不等式:2、無(wú)理不等式的類型:根號(hào)下含有未知數(shù)的不等式。根式不等式的解法-------例1解不等式解:原不等式可化為根據(jù)根式的意義及不等式的性質(zhì),得解這個(gè)不等式組,得所以,原不等式的解集為⊙⊙●根式不等式的解法-------類型(1)
2024-11-10 22:31
【總結(jié)】不等式(3)----含參不等式的解法當(dāng)在一個(gè)不等式中含有了字母,則稱這一不等式為含參數(shù)的不等式,那么此時(shí)的參數(shù)可以從以下兩個(gè)方面來(lái)影響不等式的求解,首先是對(duì)不等式的類型(即是那一種不等式)的影響,其次是字母對(duì)這個(gè)不等式的解的大小的影響。我們必須通過(guò)分類討論才可解決上述兩個(gè)問題,同時(shí)還要注意是參數(shù)的選取確定了不等式的解,而不是不等式的解來(lái)區(qū)分參數(shù)的討論。解參數(shù)不等式一直是高考所考查的重點(diǎn)內(nèi)
2025-06-16 12:16
【總結(jié)】含絕對(duì)值的不等式解法(一)復(fù)習(xí)思考1、復(fù)習(xí)初中學(xué)過(guò)的不等式的三條基本性質(zhì).(1)、如果,那么(2)、如果,那么(3)、注意:性質(zhì)(3)是不等式兩邊都乘以同一個(gè)負(fù)數(shù),不等號(hào)的方向要變.2、復(fù)習(xí)絕對(duì)值的定義及其幾何意義.幾何意義:x在數(shù)軸上所對(duì)應(yīng)點(diǎn)到原點(diǎn)的距離(二).探究新知,在數(shù)軸上在數(shù)軸上應(yīng)該怎樣表示?解絕對(duì)值不等式,由絕對(duì)值的意
2025-04-17 00:47
【總結(jié)】不等式的證明與解法(復(fù)習(xí)課)1、比較法(1)比較法證明不等式的步驟作差---變形---判斷符號(hào)----得出結(jié)論(2)比較法經(jīng)常證明什么樣的不等式高次整式多項(xiàng)式、所證不等式兩邊有相同或局部相同的部分(3)作差之后變形的思維完全平方、因式積一、不
2024-11-06 21:52
【總結(jié)】Mathwang幾個(gè)經(jīng)典不等式的關(guān)系一幾個(gè)經(jīng)典不等式(1)均值不等式設(shè)是實(shí)數(shù),等號(hào)成立.(2)柯西不等式設(shè)是實(shí)數(shù),則當(dāng)且僅當(dāng)或存在實(shí)數(shù),使得時(shí),等號(hào)成立.(3)排序不等式設(shè),為兩個(gè)數(shù)組,是的任一排列,則當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.(4)切比曉夫不等式對(duì)于兩個(gè)數(shù)組:,,有當(dāng)且僅當(dāng)或時(shí),等號(hào)成立.二相關(guān)證明(1)用排
2025-04-17 08:24
【總結(jié)】分式不等式數(shù)學(xué)科組權(quán)莘童【教學(xué)課題】分式不等式【授課時(shí)數(shù)】一課時(shí)【教學(xué)設(shè)想】《數(shù)學(xué)》作為高中的一門基礎(chǔ)課,是為了專業(yè)技能學(xué)習(xí)和升學(xué)服務(wù),,在教學(xué)中,要保證“寬”,而不追求“深”、“厚”.要本著“以學(xué)生發(fā)展為本”的教學(xué)理念,注重學(xué)生的主動(dòng)參與性,通過(guò)討論探究,、,創(chuàng)設(shè)情境,,和學(xué)生一起討論、探究分式不等式的解法,:(1)化為不等式組;(2),由于學(xué)生的基礎(chǔ)薄弱
2025-04-16 23:40