【總結(jié)】......正、余弦和差化積公式 指高中數(shù)學(xué)三角函數(shù)部分的一組恒等式 sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]·
2025-06-23 06:04
【總結(jié)】課題:積、商、冪的對(duì)數(shù)教學(xué)目標(biāo)1.理解并掌握對(duì)數(shù)性質(zhì)及運(yùn)算法則,能初步運(yùn)用對(duì)數(shù)的性質(zhì)和運(yùn)算法則解題.2.通過(guò)法則的探究與推導(dǎo),培養(yǎng)從特殊到一般的概括思想,滲透化歸思想及邏輯思維能力.3.通過(guò)法則探究,激發(fā)學(xué)習(xí)的積極性.培養(yǎng)大膽探索,實(shí)事求是的科學(xué)精神.教學(xué)重點(diǎn)難點(diǎn)難點(diǎn)是法則的探究與證明.重點(diǎn)是對(duì)
2025-08-05 10:52
【總結(jié)】一、偏導(dǎo)數(shù)的概念二、高階偏導(dǎo)數(shù)三、可微與偏導(dǎo)數(shù)的關(guān)系*多元函數(shù)的偏導(dǎo)數(shù)和全微分四、全微分在二元函數(shù)z=f(x,y)中,有兩個(gè)自變量x,y,但若固定其中一個(gè)自變量,比如,令y=y0,而讓x變化.則z成為一元函數(shù)z=f(x,y0),我們可用討論一元函數(shù)的方法來(lái)討論它
2025-08-04 18:32
【總結(jié)】導(dǎo)數(shù)公式表一、知識(shí)新授:1、常數(shù)函數(shù)與冪函數(shù)的導(dǎo)數(shù)公式1:)(0為常數(shù)CC??幾何意義:常數(shù)函數(shù)在任何一點(diǎn)處的切線平行于x軸。練習(xí)2:1x??????????00limlim11xxyfxxfxxfxxxxxxxx???????
2025-08-05 06:14
【總結(jié)】的導(dǎo)數(shù)一、復(fù)習(xí)幾何意義:曲線在某點(diǎn)處的切線的斜率;物理意義:物體在某一時(shí)刻的瞬時(shí)度。(三步法)步驟:說(shuō)明:上面的方法中把x換x0即為求函數(shù)在點(diǎn)x0處的導(dǎo)數(shù).:f(x)在點(diǎn)x0處的導(dǎo)數(shù)就是導(dǎo)函數(shù)在x=x0處的函數(shù)值
2025-10-28 17:19
【總結(jié)】第三章導(dǎo)數(shù)一導(dǎo)數(shù)幾種常見(jiàn)函數(shù)的導(dǎo)數(shù)由定義求導(dǎo)數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值.lim)3(0xyyx??????求極限說(shuō)明:上面的方法中把x換x0即為求函數(shù)在點(diǎn)x0處的導(dǎo)數(shù).
2025-07-25 15:19
【總結(jié)】1第三章復(fù)變函數(shù)的積分§解析函數(shù)的高階導(dǎo)數(shù)§解析函數(shù)的高階導(dǎo)數(shù)一、高階導(dǎo)數(shù)定理二、柯西不等式三、劉維爾定理2第三章復(fù)變函數(shù)的積分§解析函數(shù)的高階
2025-05-10 14:16
【總結(jié)】參變量函數(shù)的導(dǎo)數(shù)一、由參數(shù)方程所確定的函數(shù)的導(dǎo)數(shù).,)()(定的函數(shù)稱此為由參數(shù)方程所確間的函數(shù)關(guān)系與確定若參數(shù)方程xytytx???????例如?????,,22tytx2xt?消去參數(shù)22)2(xty???42x?xy21???
2025-07-18 14:25
【總結(jié)】.導(dǎo)數(shù)的運(yùn)算幾個(gè)常用函數(shù)的導(dǎo)數(shù)1.導(dǎo)數(shù)的幾何意義是什么?????00.nnnnfxfxPPkxx???割線的斜率是????????000'00,.,.lim.xPPkPTfxxxkf
2025-11-29 07:42
【總結(jié)】?.?條件.?.重點(diǎn)難點(diǎn)重點(diǎn):利用導(dǎo)數(shù)知識(shí)求函數(shù)的極值難點(diǎn):對(duì)極大、極小值概念的理解及求可導(dǎo)函數(shù)的極值的步驟觀察圖象中,點(diǎn)a和點(diǎn)b處的函數(shù)值與它們附近點(diǎn)的函數(shù)值有什么的大小關(guān)系?aboxy??xfy?一極值的定義?點(diǎn)a叫做函數(shù)y=f(x)的極小值點(diǎn),
2025-07-26 19:48
【總結(jié)】1.隱函數(shù)的導(dǎo)數(shù)隱函數(shù)即由方程0),(?yxF所確定的函數(shù)).(xfy?直接在方程0),(?yxF兩邊對(duì)x求導(dǎo)再解出,y?但應(yīng)注意F對(duì)變?cè)獃求導(dǎo)時(shí),要利用復(fù)合求導(dǎo)法則.2.對(duì)數(shù)求導(dǎo)法當(dāng)函數(shù)式較復(fù)雜(含乘、除、乘方、開(kāi)方、冪指函數(shù)等)時(shí),在方程兩邊取對(duì)數(shù),按隱函數(shù)的求
2025-07-24 04:24
【總結(jié)】上頁(yè)下頁(yè)鈴結(jié)束返回首頁(yè)1主要內(nèi)容:第二章導(dǎo)數(shù)與微分第三節(jié)由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù)、高階導(dǎo)數(shù)一、由參數(shù)方程確定的函數(shù)的導(dǎo)數(shù);二、高階導(dǎo)數(shù).上頁(yè)下頁(yè)鈴
2025-05-12 16:21
【總結(jié)】基本初等函數(shù)的導(dǎo)數(shù)公式1.2.()3.4.5.ln6.7.8.nRa?'n'n-1''x'xx'x'a'若f(x)=c,則f(x)=0若f(x)=x,則f(x)=nx
2025-10-25 19:25
【總結(jié)】一、復(fù)習(xí)與引入:1.函數(shù)的導(dǎo)數(shù)的定義與幾何意義...y=(3x-2)2的導(dǎo)數(shù),那么我們可以把平方式展開(kāi),利用導(dǎo)數(shù)的四則運(yùn)算法則求導(dǎo).然后能否用其它的辦法求導(dǎo)呢?又如我們知道函數(shù)y=1/x2的導(dǎo)數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導(dǎo)數(shù)又是什么呢?y?為了解決上面的問(wèn)題
2025-04-28 23:00
【總結(jié)】和差化積公式在三角函數(shù)中的綜合運(yùn)用和差化積公式與積化和差公式是兩角和差三角函數(shù)公式基礎(chǔ)上利用導(dǎo)出的兩組公式,對(duì)于和差化積公式,考慮兩個(gè)同名正弦或余弦三角函數(shù)值之和或差,將兩個(gè)角度表示為兩個(gè)角度的和與差的形式,然后利用兩角和差正余弦三角函數(shù)公式展開(kāi)運(yùn)算,即可得到兩個(gè)角度三角值乘積的形式,如,、,將這兩個(gè)角度關(guān)系代入上式,得到,而積化和差公式推導(dǎo)遵循相反的運(yùn)算過(guò)程。和差化積公式是不宜機(jī)械記憶
2025-07-23 00:17