【總結(jié)】◆知識導(dǎo)航◆典例導(dǎo)學◆反饋演練(◎第一階◎第二階◎第三階)
2025-06-14 14:08
【總結(jié)】第14章勾股定理勾股定理的應(yīng)用2022秋季數(shù)學八年級上冊?HS立體圖形上的最短距離:將立體圖形側(cè)面展開,確定兩點在展開圖上的位置,連成,的長度就是立體圖形上的兩點間的最短距離.自我診斷1.如圖,長方體的高為3cm,底面是正方形,邊長為2cm,現(xiàn)在一蟲子從點A出發(fā),沿長方體表面到
2025-06-13 14:08
【總結(jié)】在同一平面內(nèi),兩點之間,線段最短創(chuàng)設(shè)情境明確目標從行政樓A點走到教學樓B點怎樣走最近?教學樓行政樓BA你能說出這樣走的理由嗎?在同一平面內(nèi),如圖螞蟻在圓柱體的A點沿側(cè)面爬行到B點,怎樣爬路程最短?創(chuàng)設(shè)情境明確目標BA
2025-06-12 12:08
【總結(jié)】期末總復(fù)習四、勾股定理2022秋季數(shù)學八年級上冊?HS【重難點剖析】重點1.勾股定理【例1】在Rt△ABC中,∠ACB=90°,CD⊥AB于點D,若AC=6,BC=8,求BD的長.解:在Rt△ABC中,AB2=AC2+BC2
2025-06-12 22:08
2025-06-12 21:55
【總結(jié)】第14章勾股定理勾股定理直角三角形三邊的關(guān)系第2課時勾股定理的驗證及其簡單應(yīng)用拼圖法大多數(shù)是利用驗證勾股定理.利用定理,知道直角三角形任意兩條邊的長,可求出的長,并能利用它解決相關(guān)的簡單的實際問題.例如一根長為5米的木桿斜靠在墻上(如圖),桿底距墻的下沿的距離B
2025-06-16 20:57
2025-06-14 13:16
2025-06-13 13:51
2025-06-16 21:12
【總結(jié)】華東師大版數(shù)學版八年級上冊第14章勾股定理反證法專題檢測題1.如圖,已知在△ABC中,AB=AC,求證:∠B=∠,第一步應(yīng)假設(shè)()A.AB≠ACB.∠B≠∠CC.∠A+∠B+∠C≠180°D.ABC不是一個三角形2.用反證法證明“a>b”時,應(yīng)假設(shè)()A.a(chǎn)>bB.a(chǎn)<b
2025-01-14 19:13
2025-06-14 04:54
2025-06-13 14:20
【總結(jié)】第14章勾股定理專題強化七巧用勾股定理解決問題2022秋季數(shù)學八年級上冊?HS專題強化七巧用勾股定理解決問題強化角度1判斷三角形是否為直角三角形1.如圖,在四邊形ABCD中,∠ABC=90°,AB=BC=4,CD=2,AD=6,求∠BCD的度數(shù).
2025-06-18 00:11