【總結(jié)】4二次函數(shù)的應(yīng)用第二章二次函數(shù)課堂達標素養(yǎng)提升第二章二次函數(shù)第2課時最大利潤問題課堂達標一、選擇題第2課時最大利潤問題1.若一種服裝的銷售利潤y(萬元)與銷售數(shù)量x(萬件)之間滿足函數(shù)表達式y(tǒng)=-2x2+4x+5,則盈利的最值情況為()A.有最
2025-06-20 16:00
【總結(jié)】小結(jié)與復(fù)習(xí)第二章二次函數(shù)要點梳理考點講練課堂小結(jié)課后作業(yè)一、二次函數(shù)的定義要點梳理1.一般地,如果y=ax2+bx+c(a,b,c是常數(shù),a≠0),那么y叫做x的二次函數(shù).特別地,當a≠0,b=c=0時,y=ax2是二次函數(shù)的特殊形式.2.二次函數(shù)的三種基本形式(1)一般式:y=ax2
2025-06-14 03:01
2025-06-14 02:05
【總結(jié)】本章中考演練1.(上海中考)下列對二次函數(shù)y=x2-x的圖象的描述,正確的是(C)y軸2.(瀘州中考)已知二次函數(shù)y=ax2+2ax+3a2+3(其中x是自變量),當x≥2時,y隨x的增大而增大,且-2≤x≤1時,y的
2025-06-12 00:36
【總結(jié)】謝謝觀看Thankyouforwatching!
2025-06-13 16:15
【總結(jié)】4二次函數(shù)的應(yīng)用第1課時【基礎(chǔ)梳理】利用二次函數(shù)求幾何圖形的最大面積的基本方法(1)引入自變量.(2)用含自變量的代數(shù)式分別表示與所求幾何圖形相關(guān)的量.(3)根據(jù)幾何圖形的特征,列出其面積的計算公式,并且用函數(shù)表示這個面積.(4)根據(jù)函數(shù)關(guān)系式,求出最大值及取得最大值時自變量的值.【自我診斷】
2025-06-12 13:43
【總結(jié)】4二次函數(shù)的應(yīng)用第2課時T恤衫銷售過程中最大利潤等問題的過程,體會二次函數(shù)是一類最優(yōu)化問題的數(shù)學(xué)模型,感受數(shù)學(xué)的應(yīng)用價值.,并運用二次函數(shù)的知識求出實際問題的最大值、最小值.(0)ka??2二次函數(shù)y=a(x-h)頂點坐標為(h,k)①當a0時,y有最小值k②當a0時,y有最大值
2025-06-20 22:57
【總結(jié)】4二次函數(shù)的應(yīng)用第1課時,體會數(shù)學(xué)的模型思想和數(shù)學(xué)應(yīng)用價值.間的二次函數(shù)關(guān)系,并運用二次函數(shù)的知識解決實際問題.20)yaxbxca????二次函數(shù)(24,)4acba?b頂點坐標為(-2a244acba?①當a0時,y有最小值=②當a
2025-06-15 03:00
【總結(jié)】4二次函數(shù)的應(yīng)用第2課時【基礎(chǔ)梳理】(1)引入_______.(2)用含_______的代數(shù)式分別表示銷售單價或銷售收入及銷售量.自變量自變量(3)用含_______的代數(shù)式表示銷售的商品的單件盈利.(4)用函數(shù)及含_______的代數(shù)式分別表示銷售利潤,即___________.(5)根
2025-06-15 02:54
2025-06-14 06:48
【總結(jié)】章末小結(jié)與提升二次函數(shù)描述的關(guān)系實際問題二次函數(shù)概念二次函數(shù)??=????2的平移上、下平移|??|個單位長度:??=????2+??左、右平移|?|個單位長度:??=??(??-?)2上、下平移|??|個單位長度,左、右平移|?
【總結(jié)】4二次函數(shù)的應(yīng)用第二章二次函數(shù)課堂達標素養(yǎng)提升第二章二次函數(shù)第1課時最大面積問題課堂達標一、選擇題第1課時最大面積問題1.2022·南通一模為搞好環(huán)保,某公司準備修建一個長方體的污水處理池,矩形池底的周長為100m,則池底的最大面積是()
2025-06-16 16:42