freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)理化及生物知識(shí)超強(qiáng)大總結(jié)(已修改)

2025-06-19 05:45 本頁(yè)面
 

【正文】 高中數(shù)學(xué)重要知識(shí)點(diǎn)第一章 高中數(shù)學(xué)解題基本方法一、 配方法配方法是對(duì)數(shù)學(xué)式子進(jìn)行一種定向變形(配成“完全平方”)的技巧,通過(guò)配方找到已知和未知的聯(lián)系,從而化繁為簡(jiǎn)。何時(shí)配方,需要我們適當(dāng)預(yù)測(cè),并且合理運(yùn)用“裂項(xiàng)”與“添項(xiàng)”、“配”與“湊”的技巧,從而完成配方。有時(shí)也將其稱為“湊配法”。最常見的配方是進(jìn)行恒等變形,使數(shù)學(xué)式子出現(xiàn)完全平方。它主要適用于:已知或者未知中含有二次方程、二次不等式、二次函數(shù)、二次代數(shù)式的討論與求解,或者缺xy項(xiàng)的二次曲線的平移變換等問(wèn)題。配方法使用的最基本的配方依據(jù)是二項(xiàng)完全平方公式(a+b)=a+2ab+b,將這個(gè)公式靈活運(yùn)用,可得到各種基本配方形式,如:a+b=(a+b)-2ab=(a-b)+2ab;a+ab+b=(a+b)-ab=(a-b)+3ab=(a+)+(b);a+b+c+ab+bc+ca=[(a+b)+(b+c)+(c+a)]a+b+c=(a+b+c)-2(ab+bc+ca)=(a+b-c)-2(ab-bc-ca)=…結(jié)合其它數(shù)學(xué)知識(shí)和性質(zhì),相應(yīng)有另外的一些配方形式,如:1+sin2α=1+2sinαcosα=(sinα+cosα);x+=(x+)-2=(x-)+2 ;…… 等等。Ⅰ、再現(xiàn)性題組:1. 在正項(xiàng)等比數(shù)列{a}中,asa+2asa+a?a=25,則 a+a=_______。2. 方程x+y-4kx-2y+5k=0表示圓的充要條件是_____。 A. k1 B. k或k1 C. k∈R D. k=或k=13. 已知sinα+cosα=1,則sinα+cosα的值為______。 A. 1 B. -1 C. 1或-1 D. 04. 函數(shù)y=log (-2x+5x+3)的單調(diào)遞增區(qū)間是_____。 A. (-∞, ] B. [,+∞) C. (-,] D. [,3)5. 已知方程x+(a2)x+a1=0的兩根x、x,則點(diǎn)P(x,x)在圓x+y=4上,則實(shí)數(shù)a=_____?!竞?jiǎn)解】 1小題:利用等比數(shù)列性質(zhì)aa=a,將已知等式左邊后配方(a+a)易求。答案是:5。 2小題:配方成圓的標(biāo)準(zhǔn)方程形式(x-a)+(y-b)=r,解r0即可,選B。 3小題:已知等式經(jīng)配方成(sinα+cosα)-2sinαcosα=1,求出sinαcosα,然后求出所求式的平方值,再開方求解。選C。4小題:配方后得到對(duì)稱軸,結(jié)合定義域和對(duì)數(shù)函數(shù)及復(fù)合函數(shù)的單調(diào)性求解。選D。5小題:答案3-。Ⅱ、示范性題組:例1. 已知長(zhǎng)方體的全面積為11,其12條棱的長(zhǎng)度之和為24,則這個(gè)長(zhǎng)方體的一條對(duì)角線長(zhǎng)為_____。 A. 2 B. C. 5 D. 6【分析】 先轉(zhuǎn)換為數(shù)學(xué)表達(dá)式:設(shè)長(zhǎng)方體長(zhǎng)寬高分別為x,y,z,則 ,而欲求對(duì)角線長(zhǎng),將其配湊成兩已知式的組合形式可得?!窘狻吭O(shè)長(zhǎng)方體長(zhǎng)寬高分別為x,y,z,由已知“長(zhǎng)方體的全面積為11,其12條棱的長(zhǎng)度之和為24”而得:。長(zhǎng)方體所求對(duì)角線長(zhǎng)為:===5所以選B?!咀ⅰ勘绢}解答關(guān)鍵是在于將兩個(gè)已知和一個(gè)未知轉(zhuǎn)換為三個(gè)數(shù)學(xué)表示式,觀察和分析三個(gè)數(shù)學(xué)式,容易發(fā)現(xiàn)使用配方法將三個(gè)數(shù)學(xué)式進(jìn)行聯(lián)系,即聯(lián)系了已知和未知,從而求解。這也是我們使用配方法的一種解題模式。例2. 設(shè)方程x+kx+2=0的兩實(shí)根為p、q,若()+()≤7成立,求實(shí)數(shù)k的取值范圍?!窘狻糠匠蘹+kx+2=0的兩實(shí)根為p、q,由韋達(dá)定理得:p+q=-k,pq=2 ,()+()====≤7, 解得k≤-或k≥ 。又 ∵p、q為方程x+kx+2=0的兩實(shí)根, ∴ △=k-8≥0即k≥2或k≤-2綜合起來(lái),k的取值范圍是:-≤k≤- 或者 ≤k≤?!咀ⅰ?關(guān)于實(shí)系數(shù)一元二次方程問(wèn)題,總是先考慮根的判別式“Δ”;已知方程有兩根時(shí),可以恰當(dāng)運(yùn)用韋達(dá)定理。本題由韋達(dá)定理得到p+q、pq后,觀察已知不等式,從其結(jié)構(gòu)特征聯(lián)想到先通分后配方,表示成p+q與pq的組合式。假如本題不對(duì)“△”討論,結(jié)果將出錯(cuò),即使有些題目可能結(jié)果相同,去掉對(duì)“△”的討論,但解答是不嚴(yán)密、不完整的,這一點(diǎn)我們要尤為注意和重視。例3. 設(shè)非零復(fù)數(shù)a、b滿足a+ab+b=0,求()+() ?!痉治觥?對(duì)已知式可以聯(lián)想:變形為()+()+1=0,則=ω (ω為1的立方虛根);或配方為(a+b)=ab 。則代入所求式即得?!窘狻坑蒩+ab+b=0變形得:()+()+1=0 ,設(shè)ω=,則ω+ω+1=0,可知ω為1的立方虛根,所以:=,ω==1。又由a+ab+b=0變形得:(a+b)=ab ,所以 ()+()=()+()=()+()=ω+=2 。【注】 本題通過(guò)配方,簡(jiǎn)化了所求的表達(dá)式;巧用1的立方虛根,活用ω的性質(zhì),計(jì)算表達(dá)式中的高次冪。一系列的變換過(guò)程,有較大的靈活性,要求我們善于聯(lián)想和展開。【另解】由a+ab+b=0變形得:()+()+1=0 ,解出=后,化成三角形式,代入所求表達(dá)式的變形式()+()后,完成后面的運(yùn)算。此方法用于只是未聯(lián)想到ω時(shí)進(jìn)行解題。假如本題沒(méi)有想到以上一系列變換過(guò)程時(shí),還可由a+ab+b=0解出:a=b,直接代入所求表達(dá)式,進(jìn)行分式化簡(jiǎn)后,化成復(fù)數(shù)的三角形式,利用棣莫佛定理完成最后的計(jì)算。Ⅲ、鞏固性題組:1. 函數(shù)y=(x-a)+(x-b) (a、b為常數(shù))的最小值為_____。A. 8 B. C. 2. α、β是方程x-2ax+a+6=0的兩實(shí)根,則(α1) +(β1)的最小值是_____。A. - B. 8 C. 18 3. 已知x、y∈R,且滿足x+3y-1=0,則函數(shù)t=2+8有_____。 4. 橢圓x-2ax+3y+a-6=0的一個(gè)焦點(diǎn)在直線x+y+4=0上,則a=_____。A. 2 B. -6 C. -2或-6 D. 2或65. 化簡(jiǎn):2+的結(jié)果是_____。A. 2sin4 B. 2sin4-4cos4 C. -2sin4 D. 4cos4-2sin4 6. 設(shè)F和F為雙曲線-y=1的兩個(gè)焦點(diǎn),點(diǎn)P在雙曲線上且滿足∠FPF=90176。,則△FPF的面積是_________。7. 若x-1,則f(x)=x+2x+的最小值為___________。8. 已知〈βα〈π,cos(αβ)=,sin(α+β)=-,求sin2α的值。(92年高考題)9. 設(shè)二次函數(shù)f(x)=Ax+Bx+C,給定m、n(mn),且滿足A[(m+n)+ mn]+2A[B(m+n)-Cmn]+B+C=0 。 ① 解不等式f(x)0;② 是否存在一個(gè)實(shí)數(shù)t,使當(dāng)t∈(m+t,nt)時(shí),f(x)0 ?若不存在,說(shuō)出理由;若存在,指出t的取值范圍。10. 設(shè)s1,t1,m∈R,x=logt+logs,y=logt+logs+m(logt+logs),① 將y表示為x的函數(shù)y=f(x),并求出f(x)的定義域;② 若關(guān)于x的方程f(x)=0有且僅有一個(gè)實(shí)根,求m的取值范圍。二、換元法解數(shù)學(xué)題時(shí),把某個(gè)式子看成一個(gè)整體,用一個(gè)變量去代替它,從而使問(wèn)題得到簡(jiǎn)化,這叫換元法。換元的實(shí)質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對(duì)象,將問(wèn)題移至新對(duì)象的知識(shí)背景中去研究,從而使非標(biāo)準(zhǔn)型問(wèn)題標(biāo)準(zhǔn)化、復(fù)雜問(wèn)題簡(jiǎn)單化,變得容易處理。換元法又稱輔助元素法、變量代換法。通過(guò)引進(jìn)新的變量,可以把分散的條件聯(lián)系起來(lái),隱含的條件顯露出來(lái),或者把條件與結(jié)論聯(lián)系起來(lái)?;蛘咦?yōu)槭煜さ男问?,把?fù)雜的計(jì)算和推證簡(jiǎn)化。它可以化高次為低次、化分式為整式、化無(wú)理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問(wèn)題中有廣泛的應(yīng)用。換元的方法有:局部換元、三角換元、均值換元等。局部換元又稱整體換元,是在已知或者未知中,某個(gè)代數(shù)式幾次出現(xiàn),而用一個(gè)字母來(lái)代替它從而簡(jiǎn)化問(wèn)題,當(dāng)然有時(shí)候要通過(guò)變形才能發(fā)現(xiàn)。例如解不等式:4+2-2≥0,先變形為設(shè)2=t(t0),而變?yōu)槭煜さ囊辉尾坏仁角蠼夂椭笖?shù)方程的問(wèn)題。三角換元,應(yīng)用于去根號(hào),或者變換為三角形式易求時(shí),主要利用已知代數(shù)式中與三角知識(shí)中有某點(diǎn)聯(lián)系進(jìn)行換元。如求函數(shù)y=+的值域時(shí),易發(fā)現(xiàn)x∈[0,1],設(shè)x=sinα ,α∈[0,],問(wèn)題變成了熟悉的求三角函數(shù)值域。為什么會(huì)想到如此設(shè),其中主要應(yīng)該是發(fā)現(xiàn)值域的聯(lián)系,又有去根號(hào)的需要。如變量x、y適合條件x+y=r(r0)時(shí),則可作三角代換x=rcosθ、y=rsinθ化為三角問(wèn)題。均值換元,如遇到x+y=S形式時(shí),設(shè)x=+t,y=-t等等。我們使用換元法時(shí),要遵循有利于運(yùn)算、有利于標(biāo)準(zhǔn)化的原則,換元后要注重新變量范圍的選取,一定要使新變量范圍對(duì)應(yīng)于原變量的取值范圍,不能縮小也不能擴(kuò)大。如上幾例中的t0和α∈[0,]。Ⅰ、再現(xiàn)性題組:=sinxcosx+sinx+cosx的最大值是_________。(x+1)=log(4-x) (a1),則f(x)的值域是_______________。{a}中,a=-1,aa=a-a,則數(shù)列通項(xiàng)a=___________。、y滿足x+2xy-1=0,則x+y的取值范圍是___________。=3的解是_______________。(2-1) log(2-2)〈2的解集是_______________。【簡(jiǎn)解】1小題:設(shè)sinx+cosx=t∈[-,],則y=+t-,對(duì)稱軸t=-1,當(dāng)t=,y=+;2小題:設(shè)x+1=t (t≥1),則f(t)=log[(t1)+4],所以值域?yàn)?-∞,log4];3小題:已知變形為-=-1,設(shè)b=,則b=-1,b=-1+(n-1)(1)=-n,所以a=-;4小題:設(shè)x+y=k,則x-2kx+1=0, △=4k-4≥0,所以k≥1或k≤-1;5小題:設(shè)3=y(tǒng),則3y+2y-1=0,解得y=,所以x=-1;6小題:設(shè)log(2-1)=y(tǒng),則y(y+1)2,解得-2y1,所以x∈(log,log3)。Ⅱ、示范性題組:例1. 實(shí)數(shù)x、y滿足4x-5xy+4y=5 ( ①式) ,設(shè)S=x+y,求+的值。(93年全國(guó)高中數(shù)學(xué)聯(lián)賽題)【分析】 由S=x+y聯(lián)想到cosα+sinα=1,于是進(jìn)行三角換元,設(shè)代入①式求S和S的值?!窘狻吭O(shè)代入①式得: 4S-5Ssinαcosα=5 解得 S= ;∵ 1≤sin2α≤1 ∴ 3≤8-5sin2α≤13 ∴ ≤≤∴ +=+==此種解法后面求S最大值和最小值,還可由sin2α=的有界性而求,即解不等式:||≤1。這種方法是求函數(shù)值域時(shí)經(jīng)常用到的“有界法”?!玖斫狻?由S=x+y,設(shè)x=+t,y=-t,t∈[-,], 則xy=177。代入①式得:4S177。5=5, 移項(xiàng)平方整理得 100t+39S-160S+100=0 。∴ 39S-160S+100≤0 解得:≤S≤∴ +=+==【注】 此題第一種解法屬于“三角換元法”,主要是利用已知條件S=x+y與三角公式cosα+sinα=1的聯(lián)系而聯(lián)想和發(fā)現(xiàn)用三角換元,將代數(shù)問(wèn)題轉(zhuǎn)化為三角函數(shù)值域問(wèn)題。第二種解法屬于“均值換元法”,主要是由等式S=x+y而按照均值換元的思路,設(shè)x=+t、y=-t,減少了元的個(gè)數(shù),問(wèn)題且容易求解。另外,還用到了求值域的幾種方法:有界法、不等式性質(zhì)法、分離參數(shù)法。和“均值換元法”類似,我們還有一種換元法,即在題中有兩個(gè)變量x、y時(shí),可以設(shè)x=a+b,y=a-b,這稱為“和差換元法”,換元后有可能簡(jiǎn)化代數(shù)式。本題設(shè)x=a+b,y=a-b,代入①式整理得3a+13b=5 ,求得a∈[0,],所以S=(a-b)+(a+b)=2(a+b)=+a∈[,],再求+的值。例2. △ABC的三個(gè)內(nèi)角A、B、C滿足:A+C=2B,+=-,求cos的值。(96年全國(guó)理)【分析】 由已知“A+C=2B”和“三角形內(nèi)角和等于180176?!钡男再|(zhì),可得 ;由“A+C=120176?!边M(jìn)行均值換元,則設(shè) ,再代入可求cosα即cos。【解】由△ABC中已知A+C=2B,可得 ,由A+C=120176。,設(shè),代入已知等式得:+=+=+===-2,解得:cosα=, 即:cos=?!玖斫狻坑葾+C=2B,得A+C=120176。,B=60176。所以+=-=-2,設(shè)=-+m,=--m ,所以cosA=,cosC=,兩式分別相加、相減得:cosA+cosC=2coscos=cos=,cosA-cosC=-2sinsin=-sin=,即:sin=-,=-,代入sin+cos=1整理得:3m-16m-12=0,解出m=6,代入cos==?!咀ⅰ?本題兩種解法由“A+C=120176?!?、“+=-2”分別進(jìn)行均值換元,隨后結(jié)合三角形角的關(guān)系與三角公式進(jìn)行運(yùn)算,除由已知想到均值換元外,還要求對(duì)三角公式的運(yùn)用相當(dāng)熟練。假如未想到進(jìn)行均值換元,也可由三角運(yùn)算直接解出:由A+C=2B,得A+C=120176。,B=60176。所以+=-=-2,即cosA+cosC=-2cosAcosC,和積互化得:2coscos=-[cos(A+C)+cos(AC),即cos=-cos(AC)=-(2cos-1),整理得:4cos+2cos-3=0,解得:cos= y , , - x例3. 設(shè)a0,求f(x)=2a(sinx+cosx)-sinxcosx-2a的最大值和最小
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號(hào)-1