【總結(jié)】平面向量基本定理復(fù)習(xí)a?b???復(fù)習(xí):oAPB????ROBOAOP??????????1G1F?創(chuàng)設(shè)情境、提出問(wèn)題2F1v2vv?(1)力的分解(2)速度的分解怎樣探求這種關(guān)系?之間有什么關(guān)系呢?與么平面內(nèi)的任一向量,那是這一
2025-06-05 22:19
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示、模、夾角一.復(fù)習(xí)回顧:?向量的運(yùn)算律?運(yùn)算律有:)()().(2bababa????????abba???.1cbcacba??????).(3??是兩個(gè)向量的夾角其中??cos??????baba2、兩平面向量垂直的充要條件是什么?
【總結(jié)】三角函數(shù)的誘導(dǎo)公式??sin)360sin(????k??cos)360cos(????k??tan)360tan(????kZ?k???sin)2sin(??k???cos)2cos(??k???tan)2tan(??kZ?k復(fù)習(xí)引入:誘導(dǎo)公式一(終邊相同角公
2025-06-05 22:10
【總結(jié)】同角三角函數(shù)的基本關(guān)系復(fù)習(xí)回顧??歸納探索30?45?60?150?sin?cos?tan?12323322221321231232?33?22sincos???sincos??22sinco
2025-06-05 22:30
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)第一課時(shí)x6?yo-?-12?3?4?5?-2?-3?-4?1?正弦、余弦函數(shù)的圖象余弦函數(shù)的圖象正弦函數(shù)的圖象x6?yo-?-12?3?4?5?-2?-3?-4?1?y=cosx=s
2025-06-05 22:16
【總結(jié)】函數(shù)f(x)=x2–4x+3有零點(diǎn),其零點(diǎn)就是方程x2–4x+3=0的根,我們可以利用一元二次方程的求根公式求得它的零點(diǎn)為1和3.復(fù)習(xí)回顧函數(shù)f(x)=x2–4x+3有零點(diǎn)嗎?你怎樣求其零點(diǎn)???????零點(diǎn)么?到,還能用類似的方法找對(duì)于函數(shù),??;44
【總結(jié)】先來(lái)探討幾個(gè)具體的一元二次方程的根及其相應(yīng)的二次函數(shù)的圖象:一元二次方程方程的根二次函數(shù)圖象與x軸的交點(diǎn)x2-2x-3=0y=x2-2x-3x2-2x+1=0y=x2-2x+1x2-2x+3=0y=x2-2x+33121???xx????0,3,0,1?121??x
【總結(jié)】向量加法運(yùn)算及其幾何意義?向量的概念:既有大小又有方向的量叫向量。?向量的表示方法:幾何法:用一條有向線段代數(shù)表示:用a,或用有向線段的起點(diǎn)和終點(diǎn)字母表示?零向量和單位向量:長(zhǎng)度為0的向量叫零向量,長(zhǎng)度為1個(gè)單位長(zhǎng)度的向量叫單位向量。?平行向量:
2025-06-05 22:18
【總結(jié)】簡(jiǎn)單的三角恒等變換一.復(fù)習(xí):二倍角公式:sin22sincos????22cos2cossin?????22tantan21tan?????22cos1???212sin???2()S?2()C?2()T?,,()24R
2025-06-05 22:31
【總結(jié)】三角函數(shù)模型的簡(jiǎn)單應(yīng)用函數(shù)模型的應(yīng)用示例?1、物理情景——?①簡(jiǎn)諧振動(dòng)?②星體的環(huán)繞運(yùn)動(dòng)?2、地理情景——?①氣溫變化規(guī)律?②月圓與月缺?3、心理、生理現(xiàn)象——?①情緒的波動(dòng)?②智力變化狀況?③體力變化狀況?4、日常生活現(xiàn)象——
2025-06-05 22:12
【總結(jié)】?jī)山遣畹挠嘞夜綇?fù)習(xí)回顧:任意角的三角函數(shù)定義設(shè)是一個(gè)任意角,它的終邊與單位圓交于點(diǎn)?),(yxP那么:(1)叫做的正弦,記作,即;y??siny??sin(2)叫做的余弦,記作,即
2025-06-07 12:46
【總結(jié)】二倍角的正弦、余弦、正切知識(shí)回顧:請(qǐng)寫出兩角和的正弦、余弦、正切公式???????sinsincoscos)cos(?????????sincoscossin)sin(?????????tantan1tantan)tan(?????相等時(shí)會(huì)是什么結(jié)果呢和,即角
【總結(jié)】變量之間的相關(guān)關(guān)系在學(xué)校,老師經(jīng)常對(duì)學(xué)生經(jīng)常這樣說(shuō):“如果你的數(shù)學(xué)成績(jī)好,那么你的物理學(xué)習(xí)就不會(huì)有什么大問(wèn)題。”按照這種說(shuō)法,似乎學(xué)生的物理成績(jī)與數(shù)學(xué)成績(jī)之間存在著一種相關(guān)關(guān)系。這種說(shuō)法有沒(méi)有依據(jù)呢?思考憑我們的學(xué)習(xí)經(jīng)驗(yàn)可知,物理成績(jī)確實(shí)與數(shù)學(xué)成績(jī)有一定的關(guān)系,但除此以外,還存在其他影響物理成績(jī)的因素。例如
2025-06-05 22:21
【總結(jié)】平面幾何中的向量方法求證:平行四邊形兩條對(duì)角線的平方和等于相鄰兩邊的平方和的兩倍。DACB2||AB?,,ABaADb??證明:設(shè)2||a2||AD?2||b22||||ACab??2()ab??222aabb????2a?2b?2
【總結(jié)】函數(shù)y=Asin(?x+?)的圖象(一)在物理的簡(jiǎn)諧振動(dòng)中單擺對(duì)平衡位置的位移y與時(shí)間x的關(guān)系、交流電的電流y與時(shí)間x的關(guān)系等都是形如y=Asin(ωx+φ)的正弦型函數(shù)(其中A,ω,φ都是常數(shù)).xo246-6-4-2yxo2