【總結(jié)】......二次函數(shù)在閉區(qū)間上的最值一、知識要點:一元二次函數(shù)的區(qū)間最值問題,核心是函數(shù)對稱軸與給定區(qū)間的相對位置關(guān)系的討論。一般分為:對稱軸在區(qū)間的左邊,中間,右邊三種情況.設(shè),求在上的最大值與最小值。分析:
2025-03-24 06:24
【總結(jié)】二次函數(shù)與線段和差問題例題精講:如圖拋物線y=ax2+bx+c(a≠0與x軸交于A,B(1,0),與y軸交于點C,直線y=12x-2經(jīng)過點A,,對稱軸為直線l,(1)求拋物線解析式。(2)求頂點D的坐標(biāo)與對稱軸l.(3)設(shè)點E為x軸上一點,且AE=CE,求點E的坐標(biāo)。(4)設(shè)點G是y軸上的一點,是否存在點G,使得GD+GB的值最小,若存在,求出G點坐標(biāo),若不存在,
2025-04-04 03:00
【總結(jié)】二次函數(shù)最值應(yīng)用題1:(導(dǎo)數(shù))統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量y(升)關(guān)于行駛速度x(千米/小時)的函數(shù)解析式可以表示為:,已知甲、乙兩地相距100千米.(1)當(dāng)汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?(2)當(dāng)汽車以多大的速度勻速行駛時,從甲地到乙地耗油量最少?最少為多少升?2:(條件最值)如圖所示,校園內(nèi)計劃修建一
2025-03-24 06:26
【總結(jié)】二次函數(shù)課前引入二次函數(shù)是初中函數(shù)的主要內(nèi)容,也是高中學(xué)習(xí)的重要基礎(chǔ).在初中階段大家已經(jīng)知道:二次函數(shù)在自變量取任意實數(shù)時的最值情況(當(dāng)時,函數(shù)在處取得最小值,無最大值;當(dāng)時,函數(shù)在處取得最大值,無最小值.本節(jié)我們將在這個基礎(chǔ)上繼續(xù)學(xué)習(xí)當(dāng)自變量在某個范圍內(nèi)取值時,函數(shù)的最值問題..教學(xué)目標(biāo)1、掌握含參數(shù)二次函數(shù)在有限區(qū)間求最值的方法。2、在練習(xí)中讓學(xué)生體會分類討論
2025-06-29 18:24
【總結(jié)】成都市中考壓軸題(二次函數(shù))精選【例一】.如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當(dāng)k=0時,直線y=kx與x軸重合,求出此時的值;②試說明無論k取何值,
2025-03-24 06:27
【總結(jié)】二次函數(shù)與三角形周長,面積最值問題知識點:1、二次函數(shù)線段,周長問題2、二次函數(shù)線段和最小值線段差最大值問題3、二次函數(shù)面積最大值問題【新授課】考點1:線段、周長問題例1.(2018·宜賓)在平面直角坐標(biāo)系中,已知拋物線的頂點坐標(biāo)為(2,0),且經(jīng)過點(4,1),如圖,直線y=x與拋物線交于A、B兩點,直線l為y=﹣1.(1)求拋物線的解析式;(
【總結(jié)】拆分函數(shù)解析式結(jié)構(gòu),巧解問題--------------函數(shù)值域(最值)問題的解法在高中,初學(xué)函數(shù)之時,我們接觸的具體函數(shù)并不多。前面我們已經(jīng)給出了一元二次函數(shù)值域(最值)的求法步驟。除此,還有一類函數(shù)也很常見,它也是今后解決其他復(fù)雜函數(shù)值域(最值)問題的基礎(chǔ)。此類函數(shù)看似生疏,而實際這類函數(shù)的圖像,就是我們初中學(xué)過的反比例函數(shù)圖像。此類問題有三種類型,一種是函數(shù)式子決定定義域,
2025-03-24 05:36
【總結(jié)】二次函數(shù)絕對值的問題練習(xí)及答案二次函數(shù)是最簡單的非線性函數(shù)之一,而且有著豐富的內(nèi)容,它對近代數(shù)仍至現(xiàn)代數(shù)學(xué)影響深遠(yuǎn),這部分內(nèi)容為歷年來高考數(shù)學(xué)考試的一項重點考查內(nèi)容,經(jīng)久不衰,以它為核心內(nèi)容的高考試題,形式上也年年有變化,此類試題常常有絕對值,充分運用絕對值不等式及二次函數(shù)、二次方程、二次不等式的聯(lián)系,往往采用直接法,利用絕對值不等式的性質(zhì)進(jìn)行適當(dāng)放縮,常用數(shù)形結(jié)合
2025-06-23 13:56
【總結(jié)】二次函數(shù)的應(yīng)用第1課時二次函數(shù)的應(yīng)用中的面積、利潤最值問題滬科版九年級數(shù)學(xué)上冊狀元成才路狀元成才路新課導(dǎo)入某水產(chǎn)養(yǎng)殖戶用長40m的圍網(wǎng),在水庫中圍一塊矩形的水面,投放魚苗.要使圍成的水面面積最大,則它的邊長應(yīng)是多少米?狀元成才路狀元成才路解:設(shè)圍成的矩形水面的一邊長為xm,那
2025-03-13 02:03
【總結(jié)】閉區(qū)間上連續(xù)函數(shù)介值定理解題方法小結(jié)(一)來源:文都教育在高等數(shù)學(xué)的考試中,離不開考查函數(shù)的相關(guān)性質(zhì),而閉區(qū)間上的連續(xù)函數(shù)的性質(zhì)顯然是重中之重.同學(xué)們都知道閉區(qū)間上的連續(xù)函數(shù)有最值定理、有界性定理、介值定理,其中介值定理常常會與積分中值定理等證明題有著“千絲萬縷”的聯(lián)系,因此在考試中出現(xiàn)的頻率較高,下面就以閉區(qū)間上連續(xù)函數(shù)介值定理為線索來總結(jié)這類題目的類型和解題方法.介值定理如
2025-01-18 23:41
【總結(jié)】(1)配方法(2)換元法(3)圖象法(4)單調(diào)性法(5)不等式法(6)導(dǎo)數(shù)法(7)數(shù)形結(jié)合法(8)判別式法(9)三角函數(shù)有界性一、求函數(shù)最值的常用方法:最值問題是數(shù)學(xué)的重要內(nèi)容之一,是解決數(shù)學(xué)應(yīng)用的基礎(chǔ)。二、典型例題例1:對每個實數(shù)x,設(shè)f(x)是y=2
2025-10-29 00:41
【總結(jié)】2020年9月15日給定二次函數(shù):y=2x2-8x+1,我們怎么求它的最值。Oxy2-7解:y=2(x-2)2-7,由圖象知,當(dāng)x=2時,y有最小值,ymin=f(2)=-7,沒有最大值。小結(jié)、二次函數(shù)y=ax2+bx+c(a≠0)中,y取得最小值當(dāng)自變量x=
2024-11-11 21:11
【總結(jié)】課題淺談與二次函數(shù)有關(guān)的面積問題課型習(xí)題課第(一)課時授課時間教學(xué)目標(biāo)知識和能力能夠根據(jù)二次函數(shù)中不同圖形的特點選擇方法求圖形面積。過程和方法通過觀察、分析、概括、總結(jié)等方法了解二次函數(shù)面積問題的基本類型,并掌握二次函數(shù)中面積問題的相關(guān)計算,從而體會數(shù)形結(jié)合思想和轉(zhuǎn)化思想在二次函數(shù)中的應(yīng)用。情感態(tài)度和價值觀由簡單題入手逐漸
2025-04-16 12:51
【總結(jié)】第5章二次函數(shù)用二次函數(shù)解決問題第1課時利用二次函數(shù)解決銷售利潤最值問題目標(biāo)突破總結(jié)反思第5章二次函數(shù)知識目標(biāo)用二次函數(shù)解決問題知識目標(biāo)1.通過建立二次函數(shù)模型,利用二次函數(shù)性質(zhì)解決實際生活中利潤的最大(小)值問題.2.通過對函數(shù)圖像的分析,能用二次函數(shù)解決利潤與圖像信息的相
2025-06-17 23:51
【總結(jié)】......專題三:含絕對值函數(shù)的最值問題1.已知函數(shù)(),若對任意的,不等式恒成立,求實數(shù)的取值范圍.不等式化為即:(*)對任意的恒成立因為,所以分如下情況討論:[來源:學(xué)科網(wǎng)ZXXK]①當(dāng)時,不等式(*)②當(dāng)
2025-03-24 23:42