【總結(jié)】大成培訓(xùn)立體幾何強(qiáng)化訓(xùn)練,在四面體ABCD中,CB=CD,AD⊥BD,點(diǎn)E,F分別是AB,BD的中點(diǎn).求證:(Ⅰ)直線EF∥平面ACD;(Ⅱ)平面EFC⊥平面BCD.,在直三棱柱ABC-A1B1C1中,E、F分別是A1B、A1C的中點(diǎn),點(diǎn)D在B1C1上,A
2025-04-04 05:14
【總結(jié)】立體幾何大題的答題規(guī)范與技巧一、對(duì)于空間中的定理與判定,除公理外都要明確寫出條件,才有結(jié)論。需要多個(gè)條件時(shí),要逐個(gè)寫出。對(duì)于平面幾何中的結(jié)論,要求寫出完整的條件,可以省略部分證明過程。二、一般地,有多個(gè)小題時(shí),前幾小題應(yīng)該用幾何法,可以節(jié)省時(shí)間。最后一小題若幾何法較復(fù)雜,可以用坐標(biāo)法。三、建坐標(biāo)系的要求:使更多的點(diǎn)在坐標(biāo)軸上,坐標(biāo)系最好在幾何體的內(nèi)部。四、采用
2025-04-09 05:51
【總結(jié)】立體幾何大題訓(xùn)練(1)1、如圖,三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為2的等邊三角形,AA1⊥底面ABC,點(diǎn)E,F(xiàn)分別是棱CC1,BB1上的點(diǎn),且EC=B1F=2FB.(1)證明:平面AEF⊥平面ACC1A1;(2)若AA1=3,求直線AB與平面AEF所成角的正弦值.2、如圖,在四棱錐中,平
2025-03-25 06:43
【總結(jié)】高中數(shù)學(xué)立體幾何大題訓(xùn)練,在長(zhǎng)方體中,AB=AD=1,AA1=2,M是棱CC1的中點(diǎn)(Ⅰ)求異面直線A1M和C1D1所成的角的正切值;(Ⅱ)證明:平面ABM⊥平面A1B1M1,在矩形中,點(diǎn)分別在線段上,.沿直線將翻折成,使平面.(Ⅰ)求二面角的余弦值;(Ⅱ)點(diǎn)分別在線段上,若沿直線將四邊形向上翻折,使與重合,求線段的長(zhǎng)。,直三棱柱中
【總結(jié)】19.如圖,在直三棱柱ABC﹣A1B1C1中,AB=AC=5,BB1=BC=6,D,E分別是AA1和B1C的中點(diǎn).(1)求證:DE⊥BC;(2)求三棱錐E﹣BCD的體積.【考點(diǎn)】直線與平面垂直的性質(zhì);棱柱、棱錐、棱臺(tái)的體積.【專題】證明題;數(shù)形結(jié)合;數(shù)形結(jié)合法;立體幾何.【分析】(1)取BC中點(diǎn)F,連結(jié)EF,AF,由直棱柱的結(jié)構(gòu)特征和中位線定理可得四邊形ADEF是平行四
2025-03-26 05:39
【總結(jié)】全國(guó)各地高考文科數(shù)學(xué)試題分類匯編:立體幾何1.[·重慶卷20]如圖1-4所示四棱錐P-ABCD中,底面是以O(shè)為中心的菱形,PO⊥底面ABCD,AB=2,∠BAD=,M為BC上一點(diǎn),且BM=.(1)證明:BC⊥平面POM;(2)若MP⊥AP,求四棱錐P-ABMO的體積.
【總結(jié)】第35講空間幾何體的結(jié)構(gòu)第36講空間幾何體的三視圖和直觀圖第37講平面的基本性質(zhì)第38講空間中的平行關(guān)系│知識(shí)框架知識(shí)框架│知識(shí)框架│知識(shí)框架1.空間幾何體(1)認(rèn)識(shí)柱、錐、臺(tái)、球及其簡(jiǎn)單組合體的結(jié)構(gòu)特征,并能運(yùn)用
2025-07-22 16:34
【總結(jié)】2009年高考文科數(shù)學(xué)試題分類匯編——立體幾何一、選擇題1.1.(2009年廣東卷文)給定下列四個(gè)命題:①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;②若一個(gè)平面經(jīng)過另一個(gè)平面的垂線,那么這兩個(gè)平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個(gè)平面垂直,那么一個(gè)平面內(nèi)與它們的交線不垂直的直線與另一個(gè)平面也不垂直.其中,為真命題的
2025-08-08 22:12
【總結(jié)】2020年高考文科數(shù)學(xué)試題分類匯編——立體幾何一、選擇題1.1.(2020年廣東卷文)給定下列四個(gè)命題:①若一個(gè)平面內(nèi)的兩條直線與另一個(gè)平面都平行,那么這兩個(gè)平面相互平行;②若一個(gè)平面經(jīng)過另一個(gè)平面的垂線,那么這兩個(gè)平面相互垂直;③垂直于同一直線的兩條直線相互平行;..5..m④若兩個(gè)平面垂直,那么一個(gè)
2024-11-03 05:55
【總結(jié)】2020全國(guó)高考文科數(shù)學(xué)立體幾何專題鄧?yán)蠋?020年全國(guó)各省市高考文科數(shù)學(xué)試題分類匯編:立體幾何一、選擇題1.(2020年高考重慶卷(文))某幾何體的三視圖如題(8)所示,則該幾何體的表面積為()A.180B.200C.220D.240【
【總結(jié)】12020年高考數(shù)學(xué)試題分類匯編立體幾何(二)三.解答題:1.(全國(guó)一18)(本小題滿分12分)(注意:在試題卷上作答無效.........)四棱錐ABCDE?中,底面BCDE為矩形,側(cè)面ABC?底面BCDE,2BC?,2CD
2025-08-13 03:49
【總結(jié)】2013年全國(guó)各省市高考文科數(shù)學(xué)試題分類匯編:立體幾何一、選擇題.(2013年高考重慶卷(文))某幾何體的三視圖如題(8)所示,則該幾何體的表面積為 ( )A. B. C. D.【答案】D.(2013年高考課標(biāo)Ⅱ卷(文))一個(gè)四面體的頂點(diǎn)在空間直角坐標(biāo)系中的坐標(biāo)分別是,畫該四面體三視圖中的正視圖時(shí),以平面為投影面,則得到正視圖可以為
2025-08-09 00:53
【總結(jié)】1立體幾何測(cè)試卷時(shí)量:90分鐘滿分:100分班級(jí)學(xué)號(hào)姓名一、選擇題(4’×10=40’)1.一條直線與一個(gè)平面所成的角等于3?,另一直線與這個(gè)平面所成的角是6?.則這兩條直線的位置關(guān)系()A.必定相
2025-01-09 16:30
【總結(jié)】立體幾何專題1.如圖4,在邊長(zhǎng)為1的等邊三角形中,分別是邊上的點(diǎn),,是的中點(diǎn),與交于點(diǎn),將沿折起,得到如圖5所示的三棱錐,其中.(1)證明://平面;(2)證明:平面;(3)當(dāng)時(shí),求三棱錐的體積.【解析】(1)在等邊三角形中,,在折疊后的三棱錐中也成立,,平面,平面,平面;(2)在等邊三角形中,是的中點(diǎn),所以①,.在
2025-05-03 00:35
【總結(jié)】立體幾何四大綜合類型向量的常用方法:①利用法向量求點(diǎn)到面的距離定理:如圖,設(shè)n是平面的法向量,AB是平面的一條射線,其中,則點(diǎn)B到平面的距離為.②.異面直線間的距離(是兩異面直線,其公垂向量為,分別是上任一點(diǎn),為間的距離).③.直線與平面所成角(為平面的法向量).④.利用法向量求二面角的平面角定理
2025-07-24 12:09