【總結(jié)】高中數(shù)學(xué)必修4知識點總結(jié)第二章平面向量16、向量:既有大小,又有方向的量.?dāng)?shù)量:只有大小,沒有方向的量.有向線段的三要素:起點、方向、長度.零向量:長度為的向量.單位向量:長度等于個單位的向量.平行向量(共線向量):方向相同或相反的非零向量.零向量與任一向量平行.相等向量:長度相等且方向相同的向量.17、向量加法運算:⑴三角形法則的特點:首尾
2025-04-04 05:10
【總結(jié)】平面向量1向量的概念:①向量:既有大小又有方向的量向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:幾何表示法,;坐標(biāo)表示法向量的大小即向量的模(長度),記作||即向量的大小,記作||向量不能比較大小,但向量的??梢员容^大?。诹阆蛄浚洪L度為0的向量,記為,其方向是任意的,與任意向量平行零向量=||=0由于的方向是任意的,且規(guī)定平行于任何向
2025-04-04 05:09
【總結(jié)】正交分解問題?問題,理論上,一條直線由該直線上的一個向量確定了,那么平面呢?設(shè)、是同一平面內(nèi)的兩個不共1e2e線的向量,a是這一平面內(nèi)的任一向量,1e2e我們研究a與、之間的關(guān)系。1ea2e物理學(xué)中的力的分解模型OC=OM+ON=
2025-07-23 03:15
【總結(jié)】平面向量【基本概念與公式】【任何時候?qū)懴蛄繒r都要帶箭頭】:既有大小又有方向的量。記作:或。:向量的大小(或長度),記作:或。:長度為1的向量。若是單位向量,則。:長度為0的向量。記作:?!痉较蚴侨我獾?,且與任意向量平行】(共線向量):方向相同或相反的向量。:長度和方向都相同的向量。:長度相等,方向相反的向量。。:;;(指向被減數(shù)):
2025-08-11 10:44
【總結(jié)】課題:平面向量的數(shù)量積(2)班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、掌握平面向量數(shù)量積的坐標(biāo)表示;2、掌握向量垂直的坐標(biāo)表示的等價條件?!菊n前預(yù)習(xí)】1、(1)已知向量a和b的夾角是3?,|a|=2,|b|=1,則(a+b)2
2024-12-05 00:28
【總結(jié)】2.平面向量的坐標(biāo)運算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個點都可用一對有序?qū)崝?shù)(即它的坐標(biāo))表示,如點A(x,y)等.思考:對于每一個向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運算?1.兩個向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-05 10:15
【總結(jié)】第3課時平面向量的數(shù)量積基礎(chǔ)過關(guān)1.兩個向量的夾角:已知兩個非零向量和,過O點作=,=,則∠AOB=θ(0°≤θ≤180°)叫做向量與的.當(dāng)θ=0°時,與;當(dāng)θ=180°時,與;如果與的夾角是90°,我們說與垂直,記作.2.兩個向量的數(shù)量積的定義:已知兩
2025-06-08 00:02
【總結(jié)】《數(shù)學(xué)》必會基礎(chǔ)題型——《平面向量》【基本概念與公式】【任何時候?qū)懴蛄繒r都要帶箭頭】:既有大小又有方向的量。記作:或。:向量的大?。ɑ蜷L度),記作:或。:長度為1的向量。若是單位向量,則。:長度為0的向量。記作:?!痉较蚴侨我獾模遗c任意向量平行】(共線向量):方向相同或相反的向量。:長度和方向都相同的向量。:長度相等,方向相反的向量。。:
【總結(jié)】2021-2021學(xué)年高中數(shù)學(xué)同步訓(xùn)練:第2章平面向量章末檢測(蘇教版必修4)一、填空題1.與向量a=(1,3)的夾角為30°的單位向量是________________.2.已知三個力f1=(-2,-1),f2=(-3,2),f3=(4,-3)同時作用于某物體上一點,為使物體保持平衡,現(xiàn)加上一個
2024-12-05 03:25
【總結(jié)】第一頁,編輯于星期六:點三十二分。,2.3平面向量的基本定理及坐標(biāo)表示2.3.1平面向量基本定理,第二頁,編輯于星期六:點三十二分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十二分...
2024-10-22 18:48
【總結(jié)】平面向量應(yīng)用舉例平面幾何中的向量方法問題提出t57301p2???????,使得向量可以進(jìn)行線性運算和數(shù)量積運算,并具有鮮明的幾何背景,從而溝通了平面向量與平面幾何的內(nèi)在聯(lián)系,在某種條件下,平面向量與平面幾何可以相互轉(zhuǎn)化.、垂直、夾角、距離、全等、相似等,是平面幾何中常見的問題,而這些問題都可以由
2024-11-17 12:03
【總結(jié)】平面向量的坐標(biāo)運算(二)一、填空題1.已知三點A(-1,1),B(0,2),C(2,0),若AB→和CD→是相反向量,則D點坐標(biāo)是________.2.若a=(2cosα,1),b=(sinα,1),且a∥b,則tanα=______.3.已知向量a=(2x+1,4),b=(2-x,3),若
【總結(jié)】章末過關(guān)檢測卷(二)第2章平面向量(測試時間:120分鐘評價分值:150分)一、選擇題(本大題共10小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.(2021·遼寧卷)已知點A(1,3),B(4,-1),則與向量AB→同方向的單位向量
【總結(jié)】§平面向量的數(shù)量積【學(xué)習(xí)目標(biāo)、細(xì)解考綱】的意義;體會數(shù)量積與投影的關(guān)系。。,可以處理有關(guān)長度、角度和垂直問題?!局R梳理、雙基再現(xiàn)】ab與的夾角。______向量ab與,我們把______________叫ab與的數(shù)量積。(或________)記作___________即a
2024-12-02 08:37
【總結(jié)】平面幾何中的向量方法學(xué)習(xí)目標(biāo)、垂直、相等、夾角和距離等問題.——向量法和坐標(biāo)法.,體驗向量在解決幾何問題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情境問題1:若O為△ABC重心,則=.問題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個四邊形為.
2024-11-19 20:38