【總結(jié)】第十四講二次函數(shù)的同象和性質(zhì)【重點考點例析】考點一:二次函數(shù)圖象上點的坐標(biāo)特點例1已知二次函數(shù)y=a(x-2)2+c(a>0),當(dāng)自變量x分別取、3、0時,對應(yīng)的函數(shù)值分別:y1,y2,y3,,則y1,y2,y3的大小關(guān)系正確的是( )A.y3<y2<y1B.y1<y2<y3C.y2<y1<y3D.y3<y1<y2對應(yīng)訓(xùn)練1.已知二
2025-04-04 04:25
【總結(jié)】課題二次函數(shù)的圖像和性質(zhì)教學(xué)內(nèi)容一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強調(diào):和一元二次方程類似,二次項系數(shù),而可以為零.二次函數(shù)的定義域是全體實數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二
2025-07-26 04:32
【總結(jié)】二次函數(shù)的圖象和性質(zhì)1、小李從如圖所示的二次函數(shù)的圖象中,觀察得出了下面四條信息:(1)b2-4ac>0;(2)c>1;(3)ab>0;(4)a-b+c<0.你認(rèn)為其中錯誤的有()yxO(第4題)A.2個 B.3個 C.4個 D.1個第1題(-1,2)和點N(
2025-03-24 06:26
【總結(jié)】二次函數(shù)和圓綜合測試卷一.單選題(共6小題,每題1分)1.已知拋物線y=ax2+bx+c與x軸有兩個不同的交點,則關(guān)于x的一元二次方程ax2+bx+c=0根的情況是()A.有兩個不相等的實數(shù)根B.有兩個相等的實數(shù)根C.無實數(shù)根D.由b2-4ac的值確定2.如圖,動點M、N分別在直線AB與CD上,且AB∥CD,∠BMN與∠MND的角平分
2025-04-04 04:23
【總結(jié)】石老師精品數(shù)學(xué)輔導(dǎo)初三數(shù)學(xué)二次函數(shù)專題訓(xùn)練◆知識講解①一般地,如果y=ax2+bx+c(a,b,c是常數(shù)且a≠0),那么y叫做x的二次函數(shù),它是關(guān)于自變量的二次式,二次項系數(shù)必須是非零實數(shù)時才是二次函數(shù),這也是判斷函數(shù)是不是二次函數(shù)的重要依據(jù).②當(dāng)b=c=0時,二次函數(shù)y=ax2是最簡單的二次函數(shù).③二次函數(shù)
2025-08-05 03:32
【總結(jié)】初中數(shù)學(xué)二次函數(shù)復(fù)習(xí)專題〖知識點〗二次函數(shù)、拋物線的頂點、對稱軸和開口方向〖大綱要求〗1.理解二次函數(shù)的概念;2.會把二次函數(shù)的一般式化為頂點式,確定圖象的頂點坐標(biāo)、對稱軸和開口方向,會用描點法畫二次函數(shù)的圖象;3.會平移二次函數(shù)y=ax2(a≠0)的圖象得到二次函數(shù)y=a(ax+m)2+k的圖象,了解特殊與一般相互聯(lián)系和轉(zhuǎn)化的思想;4.會用待定系數(shù)法求二次函數(shù)的
2025-04-16 12:29
【總結(jié)】二次函數(shù)y=a(x-h)2+k的圖象及其性質(zhì)1說出下列函數(shù)圖象的開口方向,對稱軸,頂點,最值和增減變化情況:1)y=ax22)y=ax2+c3)y=a(x-h)2將拋物線y=ax2沿y軸方向平移c個單位,得拋物線
2024-11-21 02:34
【總結(jié)】y=ax2(a≠0)a0a0時,y隨著x的增大而增大。
2024-12-01 00:58
【總結(jié)】二次函數(shù)題目專練一、選擇題=x2+2x-2的頂點坐標(biāo)是()A.(2,-2)B.(1,-2)C.(1,-3)D.(-1,-3),則下列結(jié)論正確的是(?。粒產(chǎn)b>0,c>0?。拢產(chǎn)b>0,c<0?。茫產(chǎn)b<0,c>0 ?。模產(chǎn)b<0,c<0 第2題圖第3題圖
【總結(jié)】第1頁共2頁九年級數(shù)學(xué)二次函數(shù)的實際應(yīng)用(二次函數(shù))基礎(chǔ)練習(xí)試卷簡介:試卷簡介:全卷共2個計算題,7個解答題,分值100分,測試時間60分鐘。本套試卷立足基礎(chǔ),主要考察了學(xué)生對二次函數(shù)在實際應(yīng)用中的運用情況。各個題目難度有階梯性,學(xué)生在做題過程中可以回顧本章知識點,認(rèn)清自己對知識的掌握及靈活運用程度。學(xué)
2025-08-12 19:46
【總結(jié)】的圖象與性質(zhì)h)-a(xy2?y=ax2+ka0a0圖象開口對稱性頂點增減性回顧:二次函數(shù)y=ax2+k的性質(zhì)開口向上開口向下|a|越大,開口越小關(guān)于y軸對稱頂點是最低點頂點是最高點當(dāng)x0時,y隨x的增大而減小
2024-11-22 02:30
【總結(jié)】二次函數(shù)的應(yīng)用回顧:二次函數(shù)y=ax2+bx+c的性質(zhì)y=ax2+bx+c(a≠0)a0a0開口方向頂點坐標(biāo)對稱軸增減性極值向上向下在對稱軸的左側(cè),y隨著x的增大而減小。在對稱軸的右側(cè),y隨著x的增大而增大。在對稱軸的左側(cè),y隨著x的增
2024-11-22 04:09
【總結(jié)】y=ax2+bx+c的圖象與性質(zhì)回顧:二次函數(shù)y=a(x-h)2+k的性質(zhì)y=a(x-h)2+k(a≠0)a0ah時
【總結(jié)】二次函數(shù)的圖像和性質(zhì)中考復(fù)習(xí)賀蘭四中主講教師李春桃1、二次函數(shù)的概念2、二次函數(shù)的圖形和性質(zhì)一、知識回顧?填表:想一想,填一填,比一比,說一說:函數(shù)表達(dá)式開口方向增減性對稱軸頂點坐標(biāo)2axy?caxy??2??2hxay??cbxaxy?
【總結(jié)】教學(xué)設(shè)計方案XueDaPPTSLearningCenter姓名學(xué)生姓名填寫時間學(xué)科數(shù)學(xué)年級初三教材版本人教版階段第(4)周觀察期:□維護(hù)期:□課題名稱二次函數(shù)與相似綜合課時計劃第()課時共()課時上課時間