【正文】
用矩陣的初等行變換求N個(gè)整數(shù)的最大公因子數(shù)學(xué)系20021112班 高興龍指導(dǎo)教師 鐵 勇摘 要:初等變換是高等代數(shù)中重要的內(nèi)容之一,在數(shù)學(xué)學(xué)習(xí)中體現(xiàn)出很大的實(shí)用性。本文在常規(guī)方法(提取公因數(shù)法、分解質(zhì)因數(shù)法等)的基礎(chǔ)上,運(yùn)用最大公因子的理論知識(shí)和矩陣的初等行變換,簡(jiǎn)便有效地求出N個(gè)數(shù)的最大公因子。其意義在于體現(xiàn)這種方法的優(yōu)越性,促進(jìn)此類問(wèn)題的研究。關(guān)鍵詞:初等行變換;整數(shù);最大公因子Using the Matrix’s Elementary Row Transformationto Solve the Greatest Common Factor of N IntegerAbstract: Elementary transformation is one of the important ponents in higher algebra and shows great practical applicability in mathematics learning. On the basis of conventional methods (. the mon factor withdrawal, prime factor deposition, etc), this paper puts forward a simple method for effectively working out the greatest mon factor of N integer by adopting the theory of the greatest mon factor and elementary row transformation. The significance of this method lies in its superiority and can promote research on this kind of problems. Key words: elementary row transformation。 integer。 greatest mon factor1 引言初等數(shù)論的基礎(chǔ)是整除理論,[1],不僅為解線性方程組帶來(lái)極大的方便,同時(shí)也發(fā)展和完善了矩陣?yán)碚摫旧恚S富了矩陣?yán)碚摰膽?yīng)用.不定方程[2]是初等數(shù)論的一個(gè)重要內(nèi)容,往往需要求出最大公因子,特別是求N(N3)個(gè)整數(shù)的最大公因子,那么根據(jù)不定方程的有關(guān)理論,求出最大