【正文】
桂林電子科技大學(xué)畢業(yè)設(shè)計(jì)(論文)報告用紙 第 1 頁 編號: 畢業(yè)設(shè)計(jì) (論文 )說明書 題 目: 虛擬 6R 切削機(jī)器人 動力學(xué)研究 院 (系 ): 機(jī)電工程學(xué)院 專 業(yè): 機(jī)械電子工程 學(xué)生姓名: 學(xué) 號: 指導(dǎo)教師單位: 機(jī)電工程學(xué)院 姓 名: 職 稱: 題目類型 : ?理論研究 ?實(shí)驗(yàn)研究 ?工程設(shè)計(jì) ?工程技術(shù)研究 ?軟件開發(fā) 2021 年 5 月 26 日 桂林電子科技大學(xué)畢業(yè)設(shè)計(jì)(論文)報告用紙 第 I 頁 摘 要 隨著虛擬樣機(jī)技術(shù)的不斷發(fā)展 ,人們越來越希望建立虛擬物理模型的同時 ,也建立好控制模型。 利用 ADAMS 和 MATLAB 聯(lián)合仿真,就是在設(shè)計(jì)帶有控制系統(tǒng)的機(jī)械系統(tǒng)時,運(yùn)用 ADAMS 建立系統(tǒng)模型的虛擬樣機(jī),并將其導(dǎo)入MATALB 中進(jìn)行控制系統(tǒng)的設(shè)計(jì)和虛 擬樣機(jī)的調(diào)試,然后反饋機(jī)械系統(tǒng)的過程。通過虛擬實(shí)驗(yàn)和測試 ,在產(chǎn)品研發(fā)的初級階段就能夠發(fā)現(xiàn)設(shè)計(jì)的潛在缺陷 ,并及時找到解決方法 。 虛擬樣機(jī)技術(shù)為工業(yè)研究開發(fā)提供了一個很好的平臺,節(jié)省在產(chǎn)品開發(fā)研究階段的成本投入,模擬產(chǎn)品測試環(huán)境的各種參數(shù),且使之在可控范圍內(nèi),并且可以很方便地收集反饋信息,為產(chǎn)品的改進(jìn)提供依據(jù)。本文采用 Solidworks 進(jìn)行三維模型建造,利用 ADAMS 建立機(jī)械模型及各種輸入輸出參數(shù),利用MATLAB/Simulink 進(jìn)行模型運(yùn)動控制。 本文針對當(dāng)前虛擬樣機(jī)技術(shù)的相關(guān)問題 ,從 ADAMS 和 MATLAB 的聯(lián)合仿真等方面進(jìn)行探討 ,綜合兩者的優(yōu)點(diǎn) ,建立了兩個聯(lián)合方案 ,并以控制 切削 機(jī)器人運(yùn)動為實(shí)例 ,說明該方法的可行性。本文主要完成了以下工作: ( 1)針對切削機(jī)器人進(jìn)行了運(yùn)動學(xué)分析。( 2)采用三維建模軟件 Solidworks 創(chuàng)建了三維實(shí)體模型。( 3)將三維實(shí)體模型導(dǎo)入 ADAMS 軟件中創(chuàng)建虛擬樣機(jī)模型。( 4)規(guī)劃切削機(jī)器人的運(yùn)動軌跡,運(yùn)用 ADAMS 和 MATLAB 中的 Simulink 聯(lián)合仿真。與其他的研究相比,聯(lián)合仿真在建立虛擬樣機(jī)的同時,也完成了控制系統(tǒng)模型的建立。通過虛擬實(shí)驗(yàn)和測試,在產(chǎn)品研發(fā)的初始階段就能夠發(fā) 現(xiàn)設(shè)計(jì)潛在的缺陷,并及時找到解決方法。同時, 結(jié)果表明所應(yīng)用的聯(lián)合 仿真 控制方案 ,對復(fù)雜的系統(tǒng)控制是直觀有效的。 關(guān)鍵詞: 切削機(jī)器人; ADAMS; MATLAB; PID 控制;聯(lián)合仿真 桂林電子科技大學(xué)畢業(yè)設(shè)計(jì)(論文)報告用紙 第 II 頁 Abstract With the continuous development of virtual prototyping technology, people increasingly want to create a virtual physical model and also to establish a control model at the same time. Using ADAMS and MATLAB to make cosimulation is the process which uses ADAMS to create a virtual prototype of the system model in the designing of a mechanical system with a control system, and imports them into MATALB control system for designing and virtual prototyping debugging, then feedbacks to the mechanical systems. We can be able to find out the designing potential defects and get a solution in time in the early stages of product research and development by virtual experiments and tests. Virtual prototyping technology provideas a good platform for industrial research and development. It can save the consume of inputs in the research stage of product development and simulate various parameters for testing environment, therefore it can collect the feedback information easily and it is the foundationg for improvement of product. In this paper, the threedimensional geometrical model of the robot should be built by Solidworks. The mechanistic model and all kinds of input and output parameters are built by ADAMS, and the bicycle robot’s control model will be built in MATLAB/Simulink. In this paper, the virtual prototyping technology related issues, from ADAMS and MATLAB simulation to explore integrated the advantages of both, the establishment of two joint programs, and to control the movement of the cutting robot for instance, the feasibility of the method. In this paper pleted the following work: (1) Cutting robot kinematics analysis. (2) The use of threedimensional modeling software Solidworks to create threedimensional solid model. (3)Threedimensional solid model into ADAMS software to create a virtual prototype model. (4) Planning for cutting robot trajectory, the use of ADAMS and MATLAB Simulink cosimulation. Compared with other studies, cosimulation at the same time to create a virtual prototype, pleted the establishment of the control system model. Though the virtual experiment and test, the potential defect could be discovered in the elementary stage of the product development, and the potential defect could be made up in time. At the same time, the results showed that the application of the cosimulation control scheme to plex system controls are intuitive and effective. Key words: Cutting robot。 ADAMS。 MATLAB。 PID control。 Cosimulation 桂林電子科技大學(xué)畢業(yè)設(shè)計(jì)(論文)報告用紙 第 III 頁 目 錄 引言 .................................................. 1 1 緒論 ............................................... 2 切削機(jī)器人技術(shù)的現(xiàn)狀 ............................................ 2 虛擬樣機(jī)技術(shù) .................................................... 2 虛擬樣機(jī)技術(shù)的概念 ............................................ 2 虛擬樣機(jī)技術(shù)的研究范圍 ........................................ 2 虛擬樣機(jī)技術(shù)的應(yīng)用 ............................................ 3 課題背景及設(shè)計(jì)任務(wù) .............................................. 3 2 切削機(jī)器人的三維實(shí)體建模 ............................ 3 SOLIDWORKS 軟件介 紹 ............................................... 4 切削機(jī)器人的實(shí)體建模 ............................................ 5 基座的設(shè)計(jì) .................................................... 5 連桿的設(shè)計(jì) .................................................... 6 末端執(zhí)行器的設(shè)計(jì) .............................................. 8 模型的裝配 .................................................... 8 3 切削機(jī)器人數(shù)學(xué)建模及運(yùn)動學(xué)分析 ....................... 9 切削機(jī)器人的空間描述和坐標(biāo)變換 .................................. 9 平移變換 ...................................................... 9 旋轉(zhuǎn)變換 ..................................................... 10 復(fù)合變換 ..................................................... 11 切削機(jī)器人的 DH 表示方法 ....................................... 12 切削機(jī)器人的坐標(biāo)系與連桿參數(shù) ................................... 13 切削機(jī)器人的動力學(xué)分析 ......................................... 14 運(yùn)動學(xué)正解 ................................................... 14 運(yùn)動學(xué)反解 ......................