【正文】
學(xué) 位 論 文 空間并聯(lián)機(jī)構(gòu)的彈性動(dòng)力學(xué)優(yōu)化設(shè)計(jì) ELASTODYNAMICS OPTIMIZATION DESIGN OF SPACE PARALLEL MECHANISM A Dissertation submitted in fulfillment of the requirements of the degree of MASTER OF PHILOSOPHY from Shandong University of Science and Technology by Zhang Zhonggong Supervisor: Associate Professor Chen Xiulong College of Mechanical and Electronic Engineering May 2020 聲 明 本人呈交給山東科技大學(xué)的這篇碩士學(xué)位論文,除了所列參考文獻(xiàn)和世所公認(rèn)的文獻(xiàn)外,全部是本人在導(dǎo)師指導(dǎo)下的研究成果。該論文資料尚沒(méi)有呈交于其它任何學(xué)術(shù)機(jī)關(guān)作鑒定。 碩士生簽名: 日 期: AFFIRMATION I declare that this dissertation, submitted in fulfillment of the requirements for the award of Master of Philosophy in Shandong University of Science and Technology, is wholly my own work unless referenced of acknowledge. The document has not been submitted for qualification at any other academic institute. Signature: Date: 山東科技大學(xué)碩士學(xué)位論文 摘 要 摘 要 本論文對(duì) 4UPS/UPU 空間并聯(lián)機(jī)構(gòu)的彈性動(dòng)力學(xué)、動(dòng)力學(xué)靈敏度和動(dòng)力學(xué)優(yōu)化設(shè)計(jì)進(jìn)行了分析研究。 首先,對(duì) 4UPS/UPU 空間并聯(lián)機(jī)構(gòu)進(jìn)行彈性動(dòng)力學(xué)分析,建立并聯(lián)機(jī)構(gòu)的彈性動(dòng)力學(xué)模型;推導(dǎo)其動(dòng)力學(xué)微分方程、驅(qū)動(dòng)桿應(yīng)力和系統(tǒng)頻率的表達(dá)式,并應(yīng)用 Newmark法求解動(dòng)力學(xué)微分方程,為該機(jī)構(gòu)的彈性動(dòng)力學(xué)靈敏度分析和彈性動(dòng)力學(xué)優(yōu)化設(shè)計(jì)奠定基礎(chǔ)。 其次,運(yùn)用并聯(lián)機(jī)構(gòu)的彈性動(dòng)力學(xué)理論,以直接微分法推導(dǎo) 并聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)誤差、驅(qū)動(dòng)桿應(yīng)力和系統(tǒng)頻率對(duì)動(dòng)平臺(tái)質(zhì)量和驅(qū)動(dòng)桿截 面積等設(shè)計(jì)參數(shù)的靈敏度公式;在此基礎(chǔ)上,分析動(dòng) 平臺(tái)的質(zhì)量和驅(qū)動(dòng)桿的截面面積對(duì)并聯(lián)機(jī)構(gòu)的運(yùn)動(dòng)誤差、驅(qū)動(dòng)桿應(yīng)力和系統(tǒng)頻率的影響,為該機(jī)構(gòu)的彈性動(dòng)力學(xué)優(yōu)化設(shè)計(jì)提供理論依據(jù)。 最后,根據(jù)并聯(lián)機(jī)構(gòu)的彈性動(dòng)力學(xué)分析和靈敏度分析,確定優(yōu)化設(shè)計(jì)的設(shè)計(jì)變量、目標(biāo)函數(shù)和約束條件函數(shù),并推導(dǎo)出其函數(shù)表達(dá)式。根據(jù)優(yōu)化問(wèn)題類型 分別 應(yīng) 用線性加權(quán)法和理想點(diǎn)法將多目標(biāo) 函數(shù) 轉(zhuǎn)化為單目標(biāo) 函數(shù) ,采用內(nèi)懲罰函數(shù)法將有約束問(wèn)題轉(zhuǎn)化為無(wú)約束問(wèn)題,然后采用遺傳算法對(duì)處理后的優(yōu)化問(wèn)題進(jìn)行優(yōu)化。根據(jù)優(yōu)化結(jié)果確定并聯(lián)機(jī)構(gòu)的彈性動(dòng)力學(xué)行為得到明顯改善。 關(guān)鍵詞: 彈性動(dòng)力學(xué),靈敏度,理想點(diǎn)法,內(nèi)懲罰函數(shù)法 ,遺傳算法 山東科技大學(xué)碩士學(xué)位論文 摘 要 ABSTRACT Elastic dynamics, dynamics sensitivity and dynamics optimization design of 4UPS/UPU spatial parallel mechanism are studied in this article. Firstly, elastic dynamics of 4UPS/UPU spatial parallel mechanism is analyzed, and the elastic dynamics model of parallel mechanism is established. Expressions of elastic dynamic behaviors including dynamics differential equation, stress of driving limbs and system frequencies for 4UPS/UPU spatial parallel mechanism are derived. The dynamics differential equation is solved by Newmark method, and provides a basis for the elastic dynamics sensitivity analysis and elastic dynamics optimization of the mechanism. Secondly, based on the elastic dynamics theory, the sensitivity equation of kinematic error, stress of driving limbs and system frequencies for parallel mechanism to various design parameters including the mass of moving platform and sectional area of driving limbs are derived by the differential method, respectively. On this basis, the impact of various design parameters to elastic dynamics behaviors for parallel mechanism is analyzed, and provided an important theoretical base of elastic dynamics optimization of the mechanism. Finally, based on elastic dynamics analysis and sensitivity analysis of parallel mechanism, design variable, objective function and constraint function of optimal design are defined, and expressions of its function are derived. The linear weighted method and idealpoint method are used for converting the multiobjective optimization into the singleobjective one, and internal penalty function method is used for converting the constrained optimization into the unconstrained one. Then the geic algorithm is used for optimization of parallel mechanism. Elastic dynamics behavior of parallel mechanism after optimization based on the optimization results has improved apparently. Key words: Elastic dynamics, Sensitivity, Idealpoint method, Internal penalty function method, Geic algorithm 山東科技大學(xué)碩士學(xué)位論文 目 錄 目 錄 1 緒 論 ........................................................................................................... 1 并聯(lián)機(jī)構(gòu)的國(guó)內(nèi)外發(fā)展概況 ..................................................................................... 1 并聯(lián)機(jī)構(gòu)的動(dòng)力學(xué)研究現(xiàn)狀 ..................................................................................... 3 課題研究意義 ............................................................................................................. 4 本論文的主要內(nèi)容 ..................................................................................................... 5 2 并聯(lián)機(jī)構(gòu)彈性動(dòng)力學(xué)建模與分析 ................................................................ 6 引言 ............................................................................................................................. 6 單元彈性動(dòng)力學(xué)方程的建立 ..................................................................................... 7 支鏈彈性動(dòng)力學(xué)方程的建立 ................................................................................... 15 并聯(lián)機(jī)構(gòu)彈性動(dòng)力學(xué)方程的建立 ........................................................................... 17 并聯(lián)機(jī)構(gòu)彈性動(dòng)力學(xué)方程的求解 ........................................................................... 24 并聯(lián)機(jī)構(gòu)的應(yīng)力分析 ............................................................................................... 28 系統(tǒng)頻率特性分析 ...........................................