【總結(jié)】第一篇:勾股定理說課稿 探索勾股定理第一課時(shí)說課稿 一、教材分析 (一)教材地位與作用 這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾...
2024-11-04 17:49
【總結(jié)】第一篇:勾股定理的8種證明方法 勾股定理的8種證明方法 這個(gè)定理有許多證明的方法,其證明的方法可能是數(shù)學(xué)眾多定理中最多的。路明思(ElishaScottLoomis)的PythagoreanPro...
2024-11-16 06:05
【總結(jié)】第一篇:勾股定理逆定理說課稿 勾股定理的逆定理說課稿 一、教材分析 (一)、本節(jié)課在教材中的地位作用 “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它...
2024-11-04 17:50
【總結(jié)】勾股定理的十六種證明方法【證法1】此主題相關(guān)圖片如下:做8個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,再做三個(gè)邊長(zhǎng)分別為a、b、c的正方形,把它們像上圖那樣拼成兩個(gè)正方形.從圖上可以看到,這兩個(gè)正方形的邊長(zhǎng)都是a+b,所以面積相等.即a^2+b^2+4*(ab/2)=c^2+4*(ab/2
2025-08-20 12:09
【總結(jié)】第一篇:勾股定理證明方法 勾股定理證明方法 勾股定理的種證明方法(部分) 【證法1】(梅文鼎證明) 做四個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b,,使D、E、.∵D、E、F在一條直...
2024-11-16 04:15
【總結(jié)】勾股定理的證明馬紅艷木井鎮(zhèn)大李佃子中學(xué)一、指導(dǎo)思想:依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》及新課程理念的要求:“將數(shù)學(xué)建立在學(xué)生的認(rèn)知發(fā)展水平和已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)之上,教師應(yīng)激發(fā)學(xué)生的學(xué)習(xí)積極性,向?qū)W生提供充分從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),幫助他們?cè)谧灾魈剿骱秃献鹘涣鞯倪^程中真正理解和掌握基本的數(shù)學(xué)知識(shí)與技能,數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是從事數(shù)學(xué)學(xué)習(xí)活動(dòng)的
2025-04-16 23:55
【總結(jié)】勾股定理的十六種證明方法【證法1】此主題相關(guān)圖片如下:做8個(gè)全等的直角三角形,設(shè)它們的兩條直角邊長(zhǎng)分別為a、b,斜邊長(zhǎng)為c,再做三個(gè)邊長(zhǎng)分別為a、b、c的正方形,把它們像上圖那樣拼成兩個(gè)正方形.從圖上可以看到,這兩個(gè)正方形的邊長(zhǎng)都是a+b,所以面積相等.即a^2+b^2+4*(ab/2)=c^2+4*(ab/2)整理得到:a^2+b^2=c^2。【證法
2025-04-07 20:40
【總結(jié)】沙田學(xué)校八(10)中隊(duì)c2\a2+b2=c2證明一弦圖?趙爽?東漢末至三國(guó)時(shí)代吳國(guó)人?為《周髀算經(jīng)》作注,並著有《勾股圓方圖說》。美國(guó)總統(tǒng)的證明?加菲(JamesA.Garfield;1831?1881)?1881年
2024-11-06 13:13
【總結(jié)】勾股定理說課稿 勾股定理說課稿1一、說教材分析: (一)本節(jié)內(nèi)容在全書和章節(jié)的地位 這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(華東版),八年級(jí)第十九章第二節(jié)“勾股定理”第一課時(shí)。...
2024-12-06 22:46
【總結(jié)】第一篇:勾股定理專題證明 勾股定理專題證明 :若一個(gè)四邊形中存在一組相鄰兩邊的平方和等于一條對(duì)角線的平方,則稱這個(gè)四邊形為勾股四邊形,這兩條相鄰的邊稱為這個(gè)四邊形的勾股邊。 (1)寫出你所學(xué)過的...
2024-11-16 04:47
【總結(jié)】第一篇:如何證明勾股定理 如何證明勾股定理 勾股定理是初等幾何中的一個(gè)基本定理。這個(gè)定理有十分悠久的歷史,兩千多年來,人們對(duì)勾股定理的證明頗感興趣,因?yàn)檫@個(gè)定理太貼近人們的生活實(shí)際,以至于古往今來...
2024-11-16 22:02
【總結(jié)】《勾股定理》說課稿 一、教材分析 勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量...
2024-12-06 00:57
【總結(jié)】第一篇:幾種簡(jiǎn)單證明勾股定理的方法 幾種簡(jiǎn)單證明勾股定理的方法 ——拼圖法、定理法江蘇省泗陽(yáng)縣李口中學(xué)沈正中 據(jù)說對(duì)社會(huì)有重大影響的10大科學(xué)發(fā)現(xiàn),勾股定理就是其中之一。早在4000多年前,中國(guó)...
2025-10-05 21:00
【總結(jié)】第一篇:勾股定理的證明方法 勾股定理的證明方法 。 這種證明方法由于用了梯形面積公式和三角形面積公式,從而使證明更加簡(jiǎn)潔,它在數(shù)學(xué)史上被傳為佳話。的平方=3的平方+4的平方 在圖一中,DABC...
2024-11-16 04:55
【總結(jié)】第一篇:勾股定理的九種證明方法(附圖) 勾股定理的證明方法 一、傳說中畢達(dá)哥拉斯的證法(圖1) 左邊的正方形是由1個(gè)邊長(zhǎng)為的正方形和1個(gè)邊長(zhǎng)為的正方形以及4個(gè)直角邊分別為、,斜邊為的直角三角形拼...
2025-10-05 20:05