freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初三數(shù)學第一輪復習教案1-文庫吧

2024-10-13 12:22 本頁面


【正文】 三角形用集合表示,見圖2-4推論三角形兩邊的差小于第三邊。不符合定理的三條線段,不能組成三角形的三邊。例如三條線段長分別為5,6,1人因為5+6<12,所以這三條線段,不能作為三角形的三邊。三、三角形的內(nèi)角和定理三角形三個內(nèi)角的和等于180176。由定理可知,三角形的二個角已知,那么第三角可以由定理求得。如已知△ABC的兩個角為∠A=90176。,∠B=40176。,則∠C=180176。–90176。–40176。=50176。由定理可以知道,三角形的三個內(nèi)角中,只可能有一個內(nèi)角是直角或鈍角。推論1:直角三角形的兩個銳角互余。三角形按角分類:236。直角三角形239。三角形237。236。銳角三角形239。斜三角形237。238。鈍角三角形238。用集合表示,見圖三角形一邊與另一邊的延長線組成的角,叫三角形的外角。推論2:三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。推論3:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。例如圖2—6中∠1 >∠3;∠1=∠3+∠4;∠5>∠3+∠8;∠5=∠3+∠7+∠8;∠2>∠8;∠2=∠7+∠8;∠4>∠9;∠4=∠9+∠10等等。四、全等三角形能夠完全重合的兩個圖形叫全等形。兩個全等三角形重合時,互相重合的頂點叫對應頂點,互相重合的邊叫對應邊,互相重合的角叫對應角。全等用符號“≌”表示△ABC≌△A `B`C`表示 A和 A`,B和B`,C和C`是對應點。全等三角形的對應邊相等;全等三角形的對應角相等。如圖2—7,△ABC≌△A `B`C`,則有A、B、C的對應點A`、B`、C`;AB、BC、CA的對應邊是A`B`、B`C`、C`A`?!螦,∠B,∠C的對應角是∠A`、∠B`、∠C`。∴AB=A`B`,BC=B`C`,CA=C`A`;∠A=∠A`,∠ B=∠B`,∠C=∠C`五、全等三角形的判定邊角邊公理:有兩邊和它們的夾角對應相等的兩個三角形全等(可以簡寫成“邊角邊”或“SAS”)注意:一定要是兩邊夾角,而不能是邊邊角。角邊角公理:有兩角和它們的夾邊對應相等的兩個三角形全等(可以簡寫成“角邊角“或“ASA”)推論有兩角和其中一角的對邊對應相等的兩個三角形全等(可以簡寫成“角角邊’域“AAS”)邊邊邊公理有三邊對應相等的兩個三角形全等(可以簡寫成“邊邊邊”或“SSS”)由邊邊邊公理可知,三角形的重要性質(zhì):三角形的穩(wěn)定性。除了上面的判定定理外,“邊邊角”或“角角角”都不能保證兩個三角形全等。直角三角形全等的判定:斜邊、直角邊公理有斜邊和一條直角邊對應相等的兩個直角三角形全等(可以簡寫成“斜邊,直角邊”或“HL”)六、角的平分線定理在角的平分線上的點到這個角的兩邊的距離相等。定理一個角的兩邊的距離相等的點,在這個角的平分線上。由定理2可知:角的平分線是到角的兩邊距離相等的所有點的集合。可以證明三角形內(nèi)存在一個點,它到三角形的三邊的距離相等這個點就是三角形的三條角平分線的交點(交于一點)在兩個命題中,如果第一個命題的題設是第二個命題的結(jié)論,而第一個命題的結(jié)論又是第二個命題的題設,那么這兩個命題叫做互為逆命題,如果把其中的一個做原命題,那么另一個叫它的逆命題。如果一個定理的逆命題經(jīng)過證明是真命題,那么它也是一個定理,這兩個定理叫互逆定理,其中一個叫另一個的逆定 理。例如:“兩直線平行,同位角相等”和“同位角相等,兩直線平行”是互逆定理。一個定理不一定有逆定理,例如定理:“對頂角相等”就沒逆定理,因為“相等的角是對頂角”這是一個假命顆。七、基本作圖限定用直尺和圓規(guī)來畫圖,稱為尺規(guī)作網(wǎng)_最基本、最常用的尺規(guī)作圖.通常稱為基本作圖,例如做一條線段等于己知線段。作一個角等于已知角:作法是使三角形全等(SSS),從而得到對應角相等;平分已知角:作法仍是使三角形全等(SSS).從而得到對應角相等。經(jīng)過一點作已知直線的垂線:(1)若點在已知直線上,可看作是平分已知角平角;(2)若點在已知直線外,可用類似平分已知角的方法去做:已知點 C為圓心,適當長為半徑作弧交已知真線于A、B兩點,再以A、B為圓心,用相同的長為半徑分別作弧交于D點,連結(jié)CD即為所求垂線。作線段的垂直平分線: 線段的垂直平分線也叫中垂線。做法的實質(zhì)仍是全等三角形(SSS)。也可以用這個方法作線段的中點。八、作圖題舉例重要解決求作三角形的問題已知兩邊一夾角,求作三角形 .已知底邊上的高,求作等腰三角形九、等腰三角形的性質(zhì)定理等腰三角形的性質(zhì)定理:等腰三角形的兩個底角相等(簡寫成“等邊對等角”)推論1:等腰三角形頂角的平分線平分底邊并且垂直于底邊,就是說:等腰三角形的頂角的平分線、底邊上的中線、底邊上的高互相重合。推論2:等邊三角形的各角都相等,并且每一個角都等于60176。例如:等腰三角形底邊中線上的任一點到兩腰的距離相等,因為等腰三角形底邊中線就是頂角的角平分線、而角平分線上的點到角的兩邊距離相等n十、等腰三角形的判定定理:如果一個三角形有兩個角相,那這兩個角所對的兩條邊也相等。(簡寫成“等角對等動”)。推論1:三個角都相等的三角形是等邊三角形推論2:有一個角等于60176。的等腰三角形是等邊三角形推論3:在直角三角形中,如果一個銳角等于3O176。,那么它所對的直角邊等于斜邊的一半。十一、線段的垂直平分線定理:線段垂直平分線上的點和這條線段兩個端點的距離相等逆定理:和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上。就是說:線段的垂直平分線可以看作是和線段兩個端點距離相等的所有點的集合。十二、軸對稱和軸對稱圖形把一個圖形沿著某一條直線折疊二如果能夠與另一個圖形重合,那么就說這兩個圖形關(guān)于這條直線軸對稱,兩個圖形中的對應點叫關(guān)于這條直線的對稱點,這條直線叫對稱軸。兩個圖形關(guān)于直線對稱也叫軸對稱。定理1:關(guān)于某條直線對稱的兩個圖形是全等形。定理2:如果兩個圖形關(guān)于某條直線對稱,那么對稱軸是對應點連線的垂直平分線。定理3:兩個圖形關(guān)于某條直線對稱,如果它們的對應線段或延長相交。那么交點在對稱軸上。逆定理:如果兩個圖形的對應點連線被一條直線垂直平分,那么這兩個圖形關(guān)于這條直線對稱。如果一個圖形沿著一條直線折疊,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線就是對稱軸。例如:等腰三角形頂角的分角線就具有上面所述的特點,所以等腰三角形頂角的分角線是等腰三角形的一條對稱軸,而等腰三角形是軸對稱圖形。十三、勾股定理 勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方:a+b=c勾股定理的逆定理:如果三角形的三邊長a、b、c有下面關(guān)系: a+b=c那么這個三角形是直角三角形 例題:例已知:AB、CD相交于點O,AC∥DB,OC=OD,E、F為AB上兩點,且AE=:CE=DF 分析:要證CE=DF,可證△ACE≌△BDF,但由已知條件直接證不出全等,這時由已知條件可先證出△AOC≌△BOD,得出AC=BD,從而證出△ACE≌△:略例已知:如圖,AB=CD,BC=DA,E、F是AC上兩點,且AE=CF。求證:BF=DE 分析:觀察圖形,BF和DE分別在△CFB和△AED(或△ABF和△CDE)中,由已知條件不能直接證明這兩個三角形全等。這時可由已知條件先證明△ABC≌△CDA,由此得∠1=∠2,從而證出△CFB≌△AED。證明:略例已知:∠CAE是三角形ABC的外角, ∠1=∠2,AD∥BC。求證:AB=AC 證明:略例已知:如圖 3- 89,OE平分∠AOB,EC⊥OA于 C,ED⊥OB于 D.求證:(1)OC=OD;(2)OE垂直平分CD.分析:證明第(1)題時,利用“等角的余角相等”可得到∠OEC=∠OED,再利用角平分線的性質(zhì)定理得到 OC=OD.這樣處理,可避免證明兩個三角形全等.證明:略22222第三篇:初三數(shù)學第一輪復習教案3初三數(shù)學第一輪復習教案代數(shù)部分 第三章:方程和方程組教學目的:了解等式、方程和方程組的有關(guān)概念;熟練掌握一元一次、一元二次方程的解法,會靈活運用各種解法求方程的根;熟練掌握分式方程一般解法及換元法,并掌握分式方程驗根的方法;能靈活運用
點擊復制文檔內(nèi)容
醫(yī)療健康相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1