【總結(jié)】22)55(???nnan;,,,4321aaaa導(dǎo)引一問(wèn)題1已知,(n∈N*),(1)分別求(2)由此你能得到一個(gè)什么結(jié)論?這個(gè)結(jié)論正確嗎?問(wèn)題2費(fèi)馬(Fermat)是17世紀(jì)法國(guó)著名的數(shù)學(xué)家,他曾認(rèn)為,當(dāng)n∈N時(shí),一定都是質(zhì)數(shù),這是他對(duì)n=0,1
2025-11-11 23:54
【總結(jié)】2018屆高三第一輪復(fù)習(xí)【21】-數(shù)列極限與數(shù)學(xué)歸納法一、知識(shí)梳理:1.?dāng)?shù)學(xué)歸納法(1)由一系列有限的特殊事例得出一般結(jié)論的推理方法,通常叫歸納法,它能幫助我們發(fā)現(xiàn)一般規(guī)律;觀察、歸納、猜想、證明,是發(fā)現(xiàn)數(shù)學(xué)規(guī)律的完整過(guò)程,其中證明是指用數(shù)學(xué)歸納法證明.(2)應(yīng)用數(shù)學(xué)歸納法有兩個(gè)步驟:①證明當(dāng)取第一個(gè)時(shí)結(jié)論正確;②假設(shè)當(dāng)()時(shí),結(jié)論正確,證明當(dāng)時(shí),結(jié)論成立.這兩步缺一不可,
2025-04-17 13:02
【總結(jié)】分組求和法典題導(dǎo)入[例1] (2011·山東高考)等比數(shù)列{an}中,a1,a2,a3分別是下表第一、二、三行中的某一個(gè)數(shù),且a1,a2,a3中的任何兩個(gè)數(shù)不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求數(shù)列{an}的通項(xiàng)公式;(2)若數(shù)列{bn}滿足:bn=an+
2025-06-25 01:40
【總結(jié)】第一篇:巧用數(shù)學(xué)歸納法證明不等式 巧用數(shù)學(xué)歸納法證明不等式 數(shù)學(xué)歸納法是解決與正整數(shù)有關(guān)的命題的數(shù)學(xué)方法,它是通過(guò)有限個(gè)步驟的推理,證明n取無(wú)限個(gè)正整數(shù)的情形。 第一步是證明n取第一個(gè)值n0時(shí)命...
2025-10-28 00:31
【總結(jié)】1數(shù)列求和方法總結(jié)一.等差、等比數(shù)列求和問(wèn)題總結(jié):dnnnaaanSnn2)1(2)(11?????:?????????????)1(11)1()1(111qqqaaqqaqnaSnnn例1已知3log1log23??x,求???
2025-10-30 00:11
【總結(jié)】第一篇:數(shù)學(xué)歸納法證明不等式教案 § 學(xué)習(xí)目標(biāo):、數(shù)學(xué)歸納法證明基本步驟; 、難點(diǎn):、知識(shí)情景: (相當(dāng)于多米諾骨牌),我們可以采用下面方法來(lái)證明其正確性: (即n=no時(shí)命題成立)(歸納奠...
2025-10-20 04:04
【總結(jié)】第一節(jié)數(shù)學(xué)歸納法及其應(yīng)用舉例(三)第二章極限12C2.在用數(shù)學(xué)歸納法證明多邊形內(nèi)角和定理時(shí),第一步應(yīng)驗(yàn)證()(A)n=1時(shí)成立(B)n=2時(shí)成立(C)n=3時(shí)成立(D)n=
2025-11-03 16:44
【總結(jié)】I淺談數(shù)學(xué)歸納法的應(yīng)用摘要數(shù)學(xué)歸納法是一種非常重要的數(shù)學(xué)方法,它不僅對(duì)我們中學(xué)數(shù)學(xué)的學(xué)習(xí)有著很大的幫助,而且在高等數(shù)學(xué)的學(xué)習(xí)及研究中也是一種重要的方法,數(shù)學(xué)歸納法對(duì)公式的正確性檢驗(yàn)中也有著很大的應(yīng)用。數(shù)學(xué)歸納法是將無(wú)限化為有限的橋梁,主要探討關(guān)于自然數(shù)集的有關(guān)命題或者恒等式,數(shù)學(xué)歸納法在中學(xué)數(shù)學(xué)中的整除問(wèn)題,恒等式證明,公理證明,排列和
2025-01-12 15:26
【總結(jié)】第一篇:高考數(shù)學(xué)典型例題---數(shù)學(xué)歸納法解題 數(shù)學(xué)歸納法 每臨大事,必有靜氣;靜則神明,疑難冰釋;積極準(zhǔn)備,坦然面對(duì);最佳發(fā)揮,舍我其誰(shuí)? 結(jié)合起來(lái)看效果更好 體會(huì)絕妙解題思路建立強(qiáng)大數(shù)學(xué)模型...
2025-10-31 12:34
【總結(jié)】數(shù)列知識(shí)點(diǎn)及方法歸納1.等差數(shù)列的定義與性質(zhì)定義:(為常數(shù)),等差中項(xiàng):成等差數(shù)列前項(xiàng)和性質(zhì):是等差數(shù)列(1)若,則(2)數(shù)列仍為等差數(shù)列,仍為等差數(shù)列,公差為;(3)若三個(gè)成等差數(shù)列,可設(shè)為(4)若是等差數(shù)列,且前項(xiàng)和分別為,則(5)為等差數(shù)列(為常數(shù),是關(guān)于的常數(shù)項(xiàng)為0的二次函數(shù))的最值可求二次函數(shù)的最值;或者求出中的正、負(fù)分界項(xiàng),即:當(dāng),解
2025-08-05 09:35
【總結(jié)】題目(選修Ⅱ)第一章概率與統(tǒng)計(jì)數(shù)學(xué)歸納法高考要求1掌握數(shù)學(xué)歸納法的證明步驟,熟練表達(dá)數(shù)學(xué)歸納法證明過(guò)程2對(duì)數(shù)學(xué)歸納法的認(rèn)識(shí)不斷深化3掌握數(shù)學(xué)歸納法的應(yīng)用:①證恒等式;②整除性的證明;③探求平面幾何中的問(wèn)題;④探求數(shù)列的通項(xiàng);⑤不等式的證明知識(shí)點(diǎn)歸納1歸納法:由一些特殊事例推出一般結(jié)論的推理方法特點(diǎn):特殊→一般2不完全歸納法:根據(jù)事物的部分(而不是全部)特
2025-06-07 22:55
【總結(jié)】由蓮山課件提供選修2-22.3數(shù)學(xué)歸納法一、選擇題1.用數(shù)學(xué)歸納法證明1+++…+1)時(shí),第一步應(yīng)驗(yàn)證不等式( )A.1+2 B.1++<2C.1++<3D.1+++<3[答案] B[解析] ∵n∈N*,n>1,∴n取第一個(gè)自然數(shù)為2,左端分母最大的項(xiàng)為=,故選B.2.用數(shù)學(xué)歸納法證明1+
2025-04-04 05:17
【總結(jié)】第一篇:歸納法證明不等式 歸納法證明不等式 由于lnx0則x 1設(shè)f(x)=x-lnxf'(x)=1-1/x0 則f(x)為增函數(shù)f(x)f(1)=1 則xlnx 則可知道等式成...
2025-10-19 02:13
【總結(jié)】數(shù)列求和的基本方法與技巧福州三中金山校區(qū)林繼楓(350008)數(shù)列是高中代數(shù)的重要內(nèi)容,又是學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ)。在高考和各種數(shù)學(xué)競(jìng)賽中都占有重要的地位。數(shù)列求和是數(shù)列的重要內(nèi)容之一,除了等差數(shù)列和等比數(shù)列有求和公式外,大部分?jǐn)?shù)列的求和都需要一定的技巧。下面,就幾個(gè)方面來(lái)談?wù)剶?shù)列求和的基本方法和技巧。一、利用常用求和公式求和(定義法)
2025-01-14 02:19
【總結(jié)】高考數(shù)學(xué)難點(diǎn)突破訓(xùn)練——數(shù)列與數(shù)學(xué)歸納法,曲線2(0)yxy??上的點(diǎn)iP與x軸的正半軸上的點(diǎn)iQ及原點(diǎn)O構(gòu)成一系列正三角形△OP1Q1,△Q1P2Q2,?△Qn-1PnQn?設(shè)正三角形1nnnQPQ?的邊長(zhǎng)為na,n∈N﹡(記0Q為O),??,0nnQS.(1)求1a的值;(2)求
2025-08-20 20:23