【總結(jié)】東??h實驗中學(xué)集體備課稿紙主備人年級組九年級學(xué)科組數(shù)學(xué)送審日期教學(xué)內(nèi)容圓的對稱性(1)教材及學(xué)情分析:本節(jié)課主要是通過旋轉(zhuǎn)變換讓學(xué)生理解圓的中心對稱性,并借助旋轉(zhuǎn)變換及圓的中心對稱性來探索圓心角、弧、弦之間的關(guān)系,再次讓學(xué)生體會圓的相關(guān)知識與直線形的聯(lián)系。中心對稱是學(xué)生早已熟知的知識,利用起來應(yīng)較為
2025-11-11 00:18
【總結(jié)】例3:⑴如圖,順次連結(jié)⊙O的兩條直徑AC和BD的端點,所得的四邊形是什么特殊四邊形?ODCBA⑵如果要把直徑為30cm的圓柱形原木鋸成一根橫截面為正方形的木材,并使截面盡可能地大,應(yīng)怎樣鋸?最大橫截面面積是多少?⑶如果這根原木長15m,問鋸出地木材的體積為多少m3(樹皮等損耗略去不計)?ODC
2025-11-03 18:26
【總結(jié)】ABCDOFEG圓心角、弧、弦、弦心距之間的關(guān)系圓心角、弧、弦、弦心距之間的關(guān)系圓是中心對稱圖形O對稱中心為圓心我們已經(jīng)學(xué)過的圖形中,有哪些既是軸對稱圖形,又是中心對稱圖形?圓是軸對稱圖形對稱軸是任意一條過圓心的直線圓心角、弧、弦、弦心距之間的關(guān)系
2025-11-21 02:41
【總結(jié)】圓的對稱性復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在學(xué)過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?.圓的對稱性圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能
2025-10-09 06:59
【總結(jié)】義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書浙江版《數(shù)學(xué)》九年級上冊定理:垂直于弦的直徑平分弦,并且平分弦所對的兩條弧.●OABCDM└CD⊥AB,如圖∵CD是直徑,∴AM=BM,⌒⌒AC=BC,⌒⌒AD=BD.條件①CD為直徑②CD⊥AB
2025-11-18 23:42
【總結(jié)】創(chuàng)設(shè)情境,引入新課復(fù)習(xí)提問:(2)正三角形是軸對稱性圖形嗎?(1)什么是軸對稱圖形(3)圓是否為軸對稱圖形?如果是,它的對稱軸是什么?你能找到多少條對稱軸?如果一個圖形沿著一條直線對折,兩側(cè)的圖形能完全重合,這個圖形就是軸對稱圖形。有幾條對稱軸?是3在白紙上任意作一個圓和這個
【總結(jié)】圓的對稱性(二)白銀十中李再義教學(xué)目標(biāo):(1)理解圓的旋轉(zhuǎn)不變性,掌握圓心角、弧、弦、弦心距之間關(guān)系定理推論及應(yīng)用;(2)培養(yǎng)學(xué)生實驗、觀察、發(fā)現(xiàn)新問題,探究和解決問題的能力;(3)通過教學(xué)內(nèi)容向?qū)W生滲透事物之間可相互轉(zhuǎn)化的辯證唯物主義教育,滲透圓的內(nèi)在美(圓心
2025-11-14 13:04
【總結(jié)】圓的對稱性(2)想一想圓的對稱性(2)1.圓是什么對稱圖形?你是如何驗證的?●O(1)圓是中心對稱圖形,圓心是它的對稱中心;(2)圓是軸對稱圖形,經(jīng)過圓心的直線是它的對稱軸.圓的對稱性(2)2.圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能找到多少條對稱軸?你是如何驗證的?想一想
2025-11-21 15:36
【總結(jié)】圓的對稱性(1)看一看圓的對稱性(1)你知道車輪為什么設(shè)計成圓形?設(shè)計成三角形、四邊形又會怎樣?從中你發(fā)現(xiàn)了什么?想一想圓的對稱性(1)圓是中心對稱圖形,圓心是它的對稱中心.圓繞著圓心旋轉(zhuǎn)任何角度后,都能與自身重合.(1)在兩張透明紙片上,分別作半徑相等的⊙O和⊙
【總結(jié)】課時課題:第三章第2節(jié)圓的對稱性(第二課時)課型:新授課授課時間:2013年2月27日星期三第一節(jié)學(xué)習(xí)目標(biāo):1.理解圓的旋轉(zhuǎn)不變性;2.利用圓的旋轉(zhuǎn)不變性研究圓心角、弧、弦之間相等關(guān)系的定理.教學(xué)重點與難點:重點:、弧、弦之間相等關(guān)系的定理.“同圓”或“等圓”的前提條件.難點:利用所學(xué)知識解決問題時忽視“同圓”或“等圓”的條件.教法
2025-08-17 05:29
【總結(jié)】九年級下冊第三章圓的對稱性.,圓心角、弦、弧中有一個量相等就可以推出其他的兩個量對應(yīng)相等,以及它們在解題中的應(yīng)用.一、圓的對稱性說一說(1)圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能找到多少條對稱軸?(2)你是怎么得出結(jié)論的?圓的對稱性:
2025-05-06 23:23
【總結(jié)】ABCO例1、如圖,AB是⊙O的一條弦,OC⊥AB于點C,OA=5,AB=8。求OC的長。請抄筆記ABCOABCDO例2、如圖,AB是⊙O的一條弦,點C為弦AB的中點,OC=3,AB=8,求OA的長。例3、如圖,兩個圓都以點O為圓心,小圓的弦CD與大圓
【總結(jié)】北師大版九年級下冊第三章《圓》(第2課時)圓的對稱性及特性?圓是軸對稱圖形,圓的對稱軸是任意一條經(jīng)過圓心的直線,它有無數(shù)條對稱軸.想一想駛向勝利的彼岸?圓也是中心對稱圖形,它的對稱中心就是圓心.?用旋轉(zhuǎn)的方法可以得到:?一個圓繞著它的圓心旋轉(zhuǎn)任意一個角度,都能與原來
2025-11-09 19:07
【總結(jié)】2.圓的對稱性(3)圓心角,弧,弦,弦心距之間的關(guān)系●O(1)圓是中心對稱圖形嗎?(2)如果是,它的對稱中心是什么?圓也是中心對稱圖形.它的對稱中心就是圓心.·O圓心角頂點在圓心的角(如∠AOB).圓心角的概念A(yù)B如圖,在⊙O中,分別作相等的圓心角∠AOB和
2025-10-28 14:26
【總結(jié)】PDBCAO圓的對稱性學(xué)習(xí)目標(biāo)1、使學(xué)生通過觀察實驗理解圓的軸對稱性;2、掌握垂徑定理,理解垂徑定理的推證過程;3、能初步應(yīng)用垂徑定理進行計算和證明.4、進一步培養(yǎng)學(xué)生觀察問題、分析問題和解決問題的能力.重點難點重點垂徑定理及應(yīng)用難點靈活運用垂徑定理
2025-11-30 13:16