【總結(jié)】第2章對稱圖形——圓圓的對稱性第2課時圓的軸對稱性與垂徑定理知識目標(biāo)目標(biāo)突破第2章對稱圖形——圓總結(jié)反思知識目標(biāo)第2課時圓的軸對稱性與垂徑定理1.通過回顧軸對稱圖形的概念,了解圓是軸對稱圖形.2.通過探索圓的軸對稱性,掌握并應(yīng)用垂徑定理求線段的長度.3.通過
2025-06-18 06:53
【總結(jié)】課題:垂直于弦的直徑復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在直線形中學(xué)過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它們的對稱軸.看一看
2024-11-23 10:46
【總結(jié)】東海縣實(shí)驗(yàn)中學(xué)集體備課稿紙主備人年級組九年級學(xué)科組數(shù)學(xué)送審日期教學(xué)內(nèi)容圓的對稱性(1)教材及學(xué)情分析:本節(jié)課主要是通過旋轉(zhuǎn)變換讓學(xué)生理解圓的中心對稱性,并借助旋轉(zhuǎn)變換及圓的中心對稱性來探索圓心角、弧、弦之間的關(guān)系,再次讓學(xué)生體會圓的相關(guān)知識與直線形的聯(lián)系。中心對稱是學(xué)生早已熟知的知識,利用起來應(yīng)較為
2024-11-20 00:18
【總結(jié)】1、圓是對稱圖形嗎?它有哪些對稱性?回顧:圓既是軸對稱圖形,又是中心對稱圖形,也是旋轉(zhuǎn)對稱圖形。旋轉(zhuǎn)角度可以是任意度數(shù)。對稱軸是過圓心任意一條直線。2、能否用手中的圓演示出它的各種對稱性呢?圓的對稱軸在哪里,對稱中心和旋轉(zhuǎn)中心在哪里?將圖中的扇形AOB繞點(diǎn)O逆時針旋轉(zhuǎn)某個角度。在得到的圖形中,同學(xué)們可以通
2024-12-01 00:45
【總結(jié)】圓的對稱性復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在學(xué)過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?.圓的對稱性圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能
2024-10-18 06:59
【總結(jié)】第2章圓圓的對稱性圓是生活中常見的圖形,許多物體都給我們以圓的形象.圓是平面內(nèi)到一定點(diǎn)的距離等于定長的所有點(diǎn)組成的圖形.·定長叫作半徑.這個定點(diǎn)叫作圓心.OA圓也可以看成是平面內(nèi)一個動點(diǎn)繞一個定點(diǎn)旋轉(zhuǎn)一周所形成的圖形,定點(diǎn)叫作圓心.以點(diǎn)O為圓心的圓叫作圓O,記作⊙
2024-12-08 02:59
【總結(jié)】圓的對稱性(二)白銀十中李再義教學(xué)目標(biāo):(1)理解圓的旋轉(zhuǎn)不變性,掌握圓心角、弧、弦、弦心距之間關(guān)系定理推論及應(yīng)用;(2)培養(yǎng)學(xué)生實(shí)驗(yàn)、觀察、發(fā)現(xiàn)新問題,探究和解決問題的能力;(3)通過教學(xué)內(nèi)容向?qū)W生滲透事物之間可相互轉(zhuǎn)化的辯證唯物主義教育,滲透圓的內(nèi)在美(圓心
2024-11-23 13:04
【總結(jié)】九年級下冊第三章圓的對稱性.,圓心角、弦、弧中有一個量相等就可以推出其他的兩個量對應(yīng)相等,以及它們在解題中的應(yīng)用.一、圓的對稱性說一說(1)圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能找到多少條對稱軸?(2)你是怎么得出結(jié)論的?圓的對稱性:
2025-05-06 23:23
【總結(jié)】圓的對稱性預(yù)習(xí)案一、預(yù)習(xí)目標(biāo)及范圍:,熟練運(yùn)用垂徑定理。(難點(diǎn))。(重點(diǎn))。二、預(yù)習(xí)要點(diǎn)??三、預(yù)習(xí)檢測,⊙O的直徑CD垂直弦AB于點(diǎn)E,且CE=2,DE=8,則AB的長為()A.2B.4C.6
2024-12-09 02:20
【總結(jié)】課題:圓的的對稱性課型:新授課年級:九年級教學(xué)目標(biāo):1.經(jīng)歷探索圓的軸對稱性和中心對稱性及其相關(guān)性質(zhì)的過程;2.利用圓的旋轉(zhuǎn)不變性研究圓心角、弧、弦之間相等關(guān)系的性質(zhì);3.經(jīng)歷探索圓旋轉(zhuǎn)不變性,進(jìn)一步體會和理解研究幾何圖形的各種方法.教學(xué)重點(diǎn)與難點(diǎn):重點(diǎn)難點(diǎn):利用圓的旋轉(zhuǎn)不變性研究圓心角、弧
2024-12-08 10:59
【總結(jié)】對稱性制作人:王云松.OAB圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?18
2024-11-06 19:11
【總結(jié)】第三章圓2.圓的對稱性(二)一、學(xué)生知識狀況分析學(xué)生的知識技能基礎(chǔ):學(xué)生在七、八年級已經(jīng)學(xué)習(xí)過軸對稱圖形以及中心對稱圖形的有關(guān)概念及性質(zhì),以及本節(jié)定理的證明要用到三角形全等的知識等。在上節(jié)課中,學(xué)生學(xué)習(xí)了圓的軸對稱性,并利用軸對稱性研究了垂徑定理及其逆定理。學(xué)生具備一定的研究圖形的方法,基本掌握探究問題的途徑,具備合情推理的能力,
2024-12-09 08:13
【總結(jié)】圓的對稱性●O③AM=BM,?AB是⊙O的一條弦.?你能發(fā)現(xiàn)圖中有哪些等量關(guān)系?與同伴說說你的想法和理由.駛向勝利的彼岸?作直徑CD,使CD⊥AB,垂足為M.●O?右圖是軸對稱圖形嗎?如果是,其對稱軸是什么??我們發(fā)現(xiàn)圖中有:ABCDM└?由
2024-11-28 01:06
【總結(jié)】一、判斷題1.過圓心平分弦(直徑除外)的直線必平分弦所對的兩條弧.()2.平分弧的直徑必平分弦.()3.平分弦的直線必垂直弦.()4.在圓中,如果一條直線經(jīng)過圓心,且平分弦,必平分此弦所對的?。ǎ?.分別過弦的三等分點(diǎn)作弦的垂線.將弦所對的兩條弧分
2024-12-05 05:43
【總結(jié)】圓的對稱性(一)1、什么是中心對稱圖形?舉例說明把一個圖形繞著某一個點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形。平行四邊形、矩形、菱形、正方形復(fù)習(xí)回憶2、圓是中心對稱圖形,圓心是它的對稱中心。1.在兩張透明紙片上,分別作半徑相等的O和O’2.在O和O
2024-12-07 15:14