【總結(jié)】平均變化率一、填空題1.函數(shù)關(guān)系h(t)=-++10,從t=0到t=,自變量增量是________.2.在x=1附近,取Δx=,在四個(gè)函數(shù)①y=x;②y=x2;③y=x3;④y=1x中,平均變化率最大的是________(填序號(hào)).3.已知曲線y=14x2和這條曲線上的一點(diǎn)P(1,
2024-11-15 11:50
【總結(jié)】《導(dǎo)數(shù)的幾何意義》先來復(fù)習(xí)導(dǎo)數(shù)的概念定義:設(shè)函數(shù)y=f(x)在點(diǎn)x0處及其附近有定義,當(dāng)自變量x在點(diǎn)x0處有改變量Δx時(shí)函數(shù)有相應(yīng)的改變量Δy=f(x0+Δx)-f(x0).如果當(dāng)Δx?0時(shí),Δy/Δx的極限存在,這個(gè)極限就叫做函數(shù)f(x)在點(diǎn)x0處的導(dǎo)數(shù)(或變化率)記作
2024-11-18 12:15
【總結(jié)】導(dǎo)數(shù)的概念引入:?在高臺(tái)跳水運(yùn)動(dòng)中,平均速度不能反映他在這段時(shí)間里運(yùn)動(dòng)狀態(tài),需要用瞬時(shí)速度描述運(yùn)動(dòng)狀態(tài)。我們把物體在某一時(shí)刻的速度稱為瞬時(shí)速度.又如何求瞬時(shí)速度呢?平均變化率近似地刻畫了曲線在某一區(qū)間上的變化趨勢(shì).?如何精確地刻畫曲線在一點(diǎn)處的變化趨勢(shì)呢?)(2????ttth求:從
【總結(jié)】?函數(shù)的和、差、積、商的導(dǎo)數(shù)為常數(shù))????(x)x)(2(1'??1)a0,lna(aa)a)(3(x'x???且1)a,0a(xlna1)xlog)(4('a???且sinx(8)(cosx)
2024-11-17 20:20
【總結(jié)】復(fù)習(xí)引入:?jiǎn)栴}1:怎樣利用函數(shù)單調(diào)性的定義來討論其在定義域的單調(diào)性1.一般地,對(duì)于給定區(qū)間上的函數(shù)f(x),如果對(duì)于屬于這個(gè)區(qū)間的任意兩個(gè)自變量的值x1,x2,當(dāng)x1x2時(shí),(1)若f(x1)f(x2),那么f(x)在這個(gè)區(qū)間上是增函數(shù).即x1-x2與f(x1)-f(x2)同號(hào),即.00
2024-11-17 11:00
【總結(jié)】導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用新課引入:導(dǎo)數(shù)在實(shí)際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實(shí)際生活中的某些最值問題..(面積和體積等的最值)(利潤(rùn)方面最值)(功和功率等最值)例1:在邊長(zhǎng)為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個(gè)無
【總結(jié)】瞬時(shí)變化率——導(dǎo)數(shù)第1課時(shí)課時(shí)目標(biāo)..1.導(dǎo)數(shù)的幾何意義:函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)的幾何意義是:__________________________.2.利用導(dǎo)數(shù)的幾何意義求曲線的切線方程的步驟:(1)求出函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0);(2)根
2024-12-05 09:29
【總結(jié)】1、求函數(shù)在某點(diǎn)的切線方程2、判斷單調(diào)性、求單調(diào)區(qū)間3、求函數(shù)的極值4、求函數(shù)的最值…導(dǎo)數(shù)主要有哪些方面的應(yīng)用?應(yīng)用一、判斷單調(diào)性、求單調(diào)區(qū)間函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性之間的關(guān)系?判斷函數(shù)單調(diào)性的常用方法:(1)定義法(2)導(dǎo)數(shù)法1)如果在某區(qū)
2024-11-18 08:56
【總結(jié)】一、復(fù)習(xí)幾何意義:曲線在某點(diǎn)處的切線的斜率;(瞬時(shí)速度或瞬時(shí)加速度)物理意義:物體在某一時(shí)刻的瞬時(shí)度。2、由定義求導(dǎo)數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2024-11-17 15:21
【總結(jié)】【課堂新坐標(biāo)】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)平均變化率課后知能檢測(cè)蘇教版選修1-1一、填空題1.函數(shù)f(x)=x+1x在[2,3]上的平均變化率為________.【解析】f(3)-f(2)3-2=(3+13)-(2+12)3-2=56.【答案】562.一質(zhì)
2024-12-04 20:01
【總結(jié)】導(dǎo)數(shù)的概念[教學(xué)目的]、思想和方法;正確理解導(dǎo)數(shù)的定義、幾何意義;,建立導(dǎo)數(shù)的概念;掌握用導(dǎo)數(shù)的定義求導(dǎo)數(shù)的一般方法,讓學(xué)生積極主動(dòng)地探索導(dǎo)數(shù)概念的形成過程,鍛煉運(yùn)用分析、抽象、歸納、總結(jié)形成數(shù)學(xué)概念的能力,體會(huì)數(shù)學(xué)知識(shí)在現(xiàn)實(shí)生活中的廣泛應(yīng)用。[教學(xué)重點(diǎn)和難點(diǎn)]導(dǎo)數(shù)的概念是本節(jié)的重點(diǎn)和難點(diǎn)[教學(xué)方法]講授啟發(fā),自學(xué)演練。
2024-12-08 01:51
【總結(jié)】課題:瞬時(shí)變化率??導(dǎo)數(shù)教學(xué)目標(biāo):(1)什么是曲線上一點(diǎn)處的切線,如何作曲線上一點(diǎn)處的切線?如何求曲線上一點(diǎn)處的曲線?注意曲線未必只與曲線有一個(gè)交點(diǎn)。(2)了解以曲代直、無限逼近的思想和方法(3)瞬時(shí)速度與瞬時(shí)加速度的定義及求解方法。(4)導(dǎo)數(shù)的概念,其產(chǎn)生的背景,如何求函數(shù)在某點(diǎn)處的
2024-11-19 21:26
【總結(jié)】幾種常見函數(shù)的導(dǎo)數(shù)求函數(shù)的導(dǎo)數(shù)的方法是:00(1)()();yfxxfx?????求函數(shù)的增量00(2):()();fxxfxyxx???????求函數(shù)的增量與自變量的增量的比值0(3)()lim.xyyfxx
2024-11-17 23:34
【總結(jié)】常見函數(shù)的導(dǎo)數(shù)(2)一、復(fù)習(xí)公式一:=0(C為常數(shù))C?公式二:)()(1是常數(shù)???????xx公式三:公式四:xxcos)(sin??xxsin)(cos???公式五:指數(shù)函數(shù)的導(dǎo)數(shù)(2)().xxee??(1)()ln(0,1)
2024-11-17 23:31
【總結(jié)】3.1《變化的快慢與變化率》§1變化的快慢與變化率樹高:15米樹齡:1000年高:15厘米時(shí)間:兩天實(shí)例1分析銀杏樹雨后春筍實(shí)例2分析物體從某一時(shí)刻開始運(yùn)動(dòng),設(shè)s表示此物體經(jīng)過時(shí)間t走過的路程,在運(yùn)動(dòng)的過程中測(cè)得了一些數(shù)據(jù),如下表.t(秒)025
2024-11-18 13:30