【總結(jié)】復(fù)習(xí):合情推理?歸納推理從特殊到一般?類比推理從特殊到特殊從具體問題出發(fā)觀察、分析比較、聯(lián)想提出猜想歸納類比觀察與是思考,2整除,,銅能夠?qū)щ?銅是金屬,
2024-11-18 15:24
【總結(jié)】復(fù)數(shù)的幾何意義【教學(xué)目標(biāo)】理解復(fù)數(shù)與從原點(diǎn)出發(fā)的向量的對(duì)應(yīng)關(guān)系,掌握復(fù)數(shù)的向量表示,復(fù)數(shù)模的概念及求法,復(fù)數(shù)模的幾何意義;體會(huì)數(shù)形結(jié)合的思想在數(shù)學(xué)中的重要意義;體會(huì)事物間的普遍聯(lián)系.【教學(xué)重點(diǎn)】復(fù)數(shù)的幾何意義【教學(xué)難點(diǎn)】復(fù)數(shù)的模一、課前預(yù)習(xí):(閱讀教材86--87頁,完成知識(shí)點(diǎn)填空):實(shí)數(shù)與數(shù)軸上的點(diǎn)是一一對(duì)應(yīng)的,實(shí)數(shù)可以用數(shù)軸
2024-12-03 11:29
【總結(jié)】反證法一.反證法證明命題“設(shè)p為正整數(shù),如果p2是偶數(shù),則p也是偶數(shù)”,我們可以不去直接證明p是偶數(shù),而是否定p是偶數(shù),然后得到矛盾,從而肯定p是偶數(shù)。具體證明步驟如下:假設(shè)p不是偶數(shù),可令p=2k+1,k為整數(shù)??傻胮2=4k2+4k+1,此式表明,p2是奇數(shù),這與假設(shè)矛盾,因此假設(shè)p不是偶數(shù)不成立,從而證明
2024-11-18 01:21
【總結(jié)】2020/12/24的應(yīng)用導(dǎo)數(shù)公式表及數(shù)學(xué)軟件2020/12/24.,表導(dǎo)數(shù)公式等函數(shù)的的基本初使用下面可以直接今后我們?yōu)榱朔奖?020/12/24式基本初等函數(shù)的導(dǎo)數(shù)公????;xf,cxf.'01??則若??????;nxxf,Nnxxf.n'n12?????則
2024-11-17 05:49
【總結(jié)】-歸納推理歌德巴赫猜想:“任何一個(gè)不小于6的偶數(shù)都等于兩個(gè)奇數(shù)之和”即:偶數(shù)=奇質(zhì)數(shù)+奇質(zhì)數(shù)哥德巴赫猜想(GoldbachConjecture)世界近代三大數(shù)學(xué)難題之一。哥德巴赫是德國一位中學(xué)教師,也是一位著名的數(shù)學(xué)家,生于1690年,1725年當(dāng)選為俄國彼得堡科學(xué)院院士。1742年,哥德巴赫在教學(xué)中發(fā)現(xiàn),每個(gè)
【總結(jié)】演繹推理演繹推理課時(shí)安排:兩課時(shí)課型:新授課教學(xué)目標(biāo):一、知識(shí)與技能:了解演繹推理的含義,能利用“三段論”進(jìn)行簡單的推理。二、過程與方法:結(jié)合具體實(shí)例,了解演繹推理與合情推理的聯(lián)系和差異。三、情感態(tài)度價(jià)值觀:
【總結(jié)】1、觀察1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=,……由上述具體事實(shí)能得到怎樣的結(jié)論?2、在平面內(nèi),若a⊥c,b⊥c,則a//b.類比地推廣到空間,你會(huì)得到什么結(jié)論?并判斷正誤。正確錯(cuò)誤(可能相交)
【總結(jié)】2.2復(fù)數(shù)的乘法與除法雙基達(dá)標(biāo)?限時(shí)20分鐘?1.復(fù)數(shù)i2+i3+i41-i等于().A.-12-12iB.-12+12i-12i+12i解析i2+i3+i41-i=-1-i+11-i=-i1-i=(
2024-12-03 00:13
【總結(jié)】《數(shù)系擴(kuò)充和復(fù)數(shù)概念》教學(xué)目標(biāo)?在問題情境中了解數(shù)系的擴(kuò)充過程,體會(huì)實(shí)際需求與數(shù)學(xué)內(nèi)部的矛盾(數(shù)的運(yùn)算規(guī)則、方程理論)在數(shù)系擴(kuò)充過程中的作用,感受人類理性思維的作用以及數(shù)與現(xiàn)實(shí)世界的聯(lián)系。理解復(fù)數(shù)的基本概念以及復(fù)數(shù)相等的充要條件。了解復(fù)數(shù)的代數(shù)表示法及其幾何意義。?教學(xué)重點(diǎn):?了解數(shù)系的擴(kuò)充過程;理解復(fù)數(shù)的基本概念以
2024-11-17 12:01
【總結(jié)】ks5u精品課件數(shù)系的擴(kuò)充與復(fù)數(shù)的概念ks5u精品課件數(shù)系的擴(kuò)充自然數(shù)整數(shù)有理數(shù)無理數(shù)實(shí)數(shù)NZQR用圖形表示包含關(guān)系:復(fù)習(xí)回顧ks5u精品課件知識(shí)引入對(duì)于一元二次方程沒有實(shí)數(shù)根.012??x我們已經(jīng)知道:12??x
2024-11-18 12:13
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修2-2《數(shù)學(xué)歸納法》教學(xué)目標(biāo)?了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題。?教學(xué)重點(diǎn):?了解數(shù)學(xué)歸納法的原理第一課時(shí)一、歸納法對(duì)于某類事物,由它的一些特殊事例或其全部可能情況,歸納出一般結(jié)論的推理方法,叫歸納法。歸納法{
2024-11-17 17:34
【總結(jié)】推理與證明第二章章末歸納總結(jié)第二章知識(shí)結(jié)構(gòu)1知識(shí)梳理2隨堂練習(xí)4專題探究3知識(shí)結(jié)構(gòu)知識(shí)梳理推理與證明要解決的主要問題:運(yùn)用合情推理的思維方式探索、發(fā)現(xiàn)一些數(shù)學(xué)結(jié)論,可運(yùn)用演繹推理來加以證明.學(xué)會(huì)了綜合法、分析法及反
2024-11-17 20:10
【總結(jié)】(1)對(duì)于某類事物,由它的一些特殊事例或其全部可能情況,歸納出一般結(jié)論的推理方法,叫歸納法.歸納法{完全歸納法不完全歸納法由特殊一般特點(diǎn):a2=a1+da3=a1+2da4=a1+3d……an=a1+(n-1)d如何證明:1+3+5+…+(2n-1)=
【總結(jié)】【成才之路】2021-2021學(xué)年高中數(shù)學(xué)第3章第2課時(shí)復(fù)數(shù)的乘法與除法課時(shí)作業(yè)新人教B版選修2-2一、選擇題1.(2021·新課標(biāo)Ⅱ理,2)若a為實(shí)數(shù),且(2+ai)(a-2i)=-4i,則a=()A.-1B.0C.1D.2[答案]B
2024-12-03 11:27
【總結(jié)】曲邊梯形面積與定積分:在直角坐標(biāo)系中,由連續(xù)曲線y=f(x),直線x=a、x=b及x軸所圍成的圖形叫做曲邊梯形。Oxyaby=f(x)一.求曲邊梯形的面積x=ax=by=f(x)baxyOA1A?A1.用
2024-11-17 05:48