【摘要】2020/12/24綜合法與分析法2020/12/24推理與證明推理證明合情推理演繹推理直接證明數(shù)學(xué)歸納法間接證明比較法類比推理歸納推理分析法綜合法反證法知識(shí)結(jié)構(gòu)2020/12/24bc+caca+abab
2024-11-17 05:49
【摘要】一輪復(fù)習(xí)學(xué)案§應(yīng)用(1)姓名☆復(fù)習(xí)目標(biāo):1.理解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系;2.了解可導(dǎo)函數(shù)在某點(diǎn)取得極值的必要條件和充分條件(導(dǎo)數(shù)在極值點(diǎn)兩側(cè)異號(hào))。?基礎(chǔ)熱身:1.3()31fxaxx???對(duì)于?
2024-12-08 01:48
【摘要】《復(fù)數(shù)代數(shù)形式的的四則運(yùn)算-復(fù)數(shù)的加法與減法》教學(xué)目標(biāo)?掌握復(fù)數(shù)的加法與減法的運(yùn)算及幾何意義?教學(xué)重點(diǎn):?掌握復(fù)數(shù)的加法與減法的運(yùn)算及幾何意義鞏固練習(xí)復(fù)數(shù)的運(yùn)算法則復(fù)數(shù)加減運(yùn)算的幾何意義問(wèn)題引入作業(yè):自由安排復(fù)數(shù)的四則運(yùn)算(一)我們知道實(shí)數(shù)有加、減、乘等運(yùn)算,且有
2024-11-18 12:13
【摘要】實(shí)數(shù)集的一些性質(zhì)和特點(diǎn):(1)實(shí)數(shù)可以判定相等或不相等;(2)不相等的實(shí)數(shù)可以比較大?。?3)實(shí)數(shù)可以用數(shù)軸上的點(diǎn)表示;(4)實(shí)數(shù)可以進(jìn)行四則運(yùn)算;(5)負(fù)實(shí)數(shù)不能進(jìn)行開(kāi)偶次方根運(yùn)算;……(1)實(shí)數(shù)集原有的有關(guān)性質(zhì)和特點(diǎn)能否推廣到復(fù)數(shù)集?(2)從復(fù)數(shù)的特點(diǎn)出發(fā),尋找復(fù)數(shù)集新的(實(shí)數(shù)集
2024-11-17 17:10
【摘要】導(dǎo)數(shù)的計(jì)算(2)復(fù)習(xí)導(dǎo)函數(shù)的定義00()()()limlimxxyfxxfxfxyxx???????????????今后我們可以直接使用的基本初等函數(shù)的導(dǎo)數(shù)公式表11.(),'()0;2.(),'();3.()s
【摘要】導(dǎo)數(shù)公式【教學(xué)目標(biāo)】能根據(jù)導(dǎo)數(shù)的定義,求函數(shù)cy?,xy?,2xy?,xy1?,xy?的導(dǎo)數(shù)。能利用給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡(jiǎn)單函數(shù)的導(dǎo)數(shù)?!窘虒W(xué)重點(diǎn)】常數(shù)函數(shù)、冪函數(shù)的導(dǎo)數(shù)【教學(xué)難點(diǎn)】利用公式求導(dǎo)一、課前預(yù)習(xí)(閱讀教材14--17頁(yè),填寫(xiě)知識(shí)點(diǎn))__
2024-11-19 10:27
【摘要】綜合檢測(cè)一、選擇題1.i是虛數(shù)單位,復(fù)數(shù)1-3i1-i的共軛復(fù)數(shù)是()A.2+iB.2-iC.-1+2iD.-1-2i2.“金導(dǎo)電、銀導(dǎo)電、銅導(dǎo)電、錫導(dǎo)電,所以一切金屬都導(dǎo)電”.此推理方法是()A.完全歸納推理B.歸納推理
2024-12-05 01:51
【摘要】導(dǎo)數(shù)的計(jì)算(3)復(fù)習(xí)導(dǎo)函數(shù)的定義00()()()limlimxxyfxxfxfxyxx???????????????今后我們可以直接使用的基本初等函數(shù)的導(dǎo)數(shù)公式表11.(),'()0;2.(),'();3.()s
【摘要】《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)數(shù)學(xué)(選修2-2)》數(shù)系的擴(kuò)充和復(fù)數(shù)的概念說(shuō)課流程五教學(xué)過(guò)程數(shù)系的擴(kuò)充和復(fù)數(shù)的概念數(shù)系的擴(kuò)充與復(fù)數(shù)的引入是高中生必備的基礎(chǔ)知識(shí).在本節(jié)中,學(xué)生將在問(wèn)題情境中了解數(shù)系擴(kuò)充的過(guò)程以及引入復(fù)數(shù)的必要性,學(xué)習(xí)復(fù)數(shù)的一些基本知識(shí),體會(huì)人類理性思維在數(shù)
【摘要】12???,??th,.,at,,規(guī)律導(dǎo)數(shù)的符號(hào)有什么變化地相應(yīng)特點(diǎn)此點(diǎn)附近的圖象有什么是多少呢在此點(diǎn)的導(dǎo)數(shù)函數(shù)那么距水面的高度最大高臺(tái)跳水運(yùn)動(dòng)員時(shí)我們發(fā)現(xiàn)觀察圖?thOa?圖??0th'?單調(diào)遞增??0th'?單調(diào)遞減??0ah'??圖.,值的過(guò)程形象解釋
2024-11-18 15:24
【摘要】§學(xué)習(xí)目標(biāo)1.理解曲邊梯形面積的求解思想,掌握其方法步驟;2.了解定積分的定義、性質(zhì)及函數(shù)在上可積的充分條件;3.明確定積分的幾何意義和物理意義;4.無(wú)限細(xì)分和無(wú)窮累積的思維方法.預(yù)習(xí)與反饋(預(yù)習(xí)教材P42~P47,找出疑惑之處)1.用化歸為計(jì)算矩形面積和逼近的思想方法求出曲邊遞形的面積的具體步驟為、
2024-12-08 08:44
【摘要】數(shù)學(xué)歸納法應(yīng)用舉例例1.用數(shù)學(xué)歸納法證明:2222(1)(21)1236nnnn???????證明:(1)當(dāng)n=1時(shí),左邊=1,右邊=1,等式成立;(2)假設(shè)當(dāng)n=k時(shí),等式成立,即2222(1)(21)1236kkkk???????那么
2024-11-18 01:21
【摘要】1導(dǎo)數(shù)的幾何意義311..2?????????,.,,''的幾何意義是什么呢導(dǎo)數(shù)么那附近的變化情況在數(shù)反映了函處的瞬時(shí)變化率在表示函數(shù)導(dǎo)數(shù)我們知道0000xfxxxfxxxfxf??3P1P2P3P4PTTTTPP??
【摘要】演繹推理【教學(xué)目標(biāo)】,掌握演繹推理的基本模式,能運(yùn)用它們進(jìn)行簡(jiǎn)單的推理。了解合情推理與演繹推理的聯(lián)系和差別;2.通過(guò)學(xué)習(xí)演繹推理,體會(huì)推理的規(guī)則,合乎邏輯地進(jìn)行推理;,認(rèn)識(shí)數(shù)學(xué)的人文價(jià)值,培養(yǎng)理性思維,形成審慎思維的習(xí)慣.【教學(xué)重點(diǎn)】演繹推理的結(jié)構(gòu)特征【教學(xué)難點(diǎn)】三段論推理規(guī)則一、課前預(yù)習(xí):(閱讀教材59—61頁(yè),完成知識(shí)點(diǎn)填空
2024-12-03 11:30
【摘要】(第一課時(shí))單縣一中時(shí)克然多米諾骨牌問(wèn)題情境一已知數(shù)列的通項(xiàng)公式為}{na22)55(???nnan(1)求出其前四項(xiàng),你能得到什么樣的猜想?(2)你的猜想正確嗎?對(duì)于數(shù)列{},na)1(2111????nnnaaa)∈(*Nn
2024-11-17 12:01