【總結】第三章§4把握熱點考向應用創(chuàng)新演練考點一考點二考點三理解教材新知4.1曲線與方程在平面直角坐標系中,到兩坐標軸距離相等的點的軌跡方程中.問題1:直線y=x上任一點M到兩坐標軸距離相等嗎?提示:相
2024-11-17 23:14
【總結】課題雙曲線的簡單性質(zhì)學習目標:...,在自主探究合作交流中通過類比,分析雙曲線的幾何性質(zhì).學習重點:掌握雙曲線的簡單幾何性質(zhì)學習難點:能區(qū)別橢圓與雙曲線的性質(zhì)學習方法:以講學稿為依托的探究式教學方法。學習過程一、課前預習指導:1、雙曲線的性質(zhì):
2024-11-18 18:59
【總結】-*-雙曲線的簡單性質(zhì)首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡1.掌握雙曲線的范圍、對稱性、頂點、漸近線及離心率等簡單幾何性質(zhì).2.感受雙曲線在刻畫現(xiàn)實世界和解決實際問題中的作用,體會數(shù)形結合思想.
2024-11-16 23:24
【總結】2020/12/242020/12/24復習回顧平面內(nèi),動點p到兩個定點F1F2的距離和是常數(shù),p形成的軌跡?12122PFPFaFF???12122PFPFaFF???12122PFPFaFF???無軌跡.軌跡為線段軌跡為橢圓2020/12/24
2024-11-17 11:59
【總結】雙曲線及其標準方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復習雙曲
2024-11-17 19:31
【總結】第三章第1課時一、選擇題1.雙曲線x210-y22=1的焦距為()A.32B.42C.33D.43[答案]D[解析]c2=a2+b2=10+2=12,則2c=43,故選D.2.已知平面內(nèi)有一定線段AB,其長度為4,動點P滿足|PA
2024-11-30 11:35
【總結】第三章第2課時一、選擇題1.下列曲線中離心率為62的是()A.x22-y24=1B.x24-y22=1C.x24-y26=1D.x24-y210=1[答案]B[解析]雙曲線的離心率e=ca=a2+b2a2
2024-11-30 05:16
【總結】圓錐曲線與方程第二章§1橢圓橢圓及其標準方程第二章課堂典例探究2課時作業(yè)3課前自主預習1課前自主預習,經(jīng)歷從具體情境中抽象出橢圓的過程和橢圓標準方程的推導與化簡過程.2.掌握橢圓的定義、標準方程及幾何圖形,會用待定系數(shù)法求橢圓的標準方程.___________
2024-11-16 23:27
【總結】課題拋物線及其標準方程(一)第一課時學習目標:、準線的概念..,利用方程研究拋物線,進一步運用坐標法,提高“數(shù)學應用”意識.學習重點:.會求簡單的拋物線的方程.學習難點:標準方程的推導學習方法:以講學稿為依托的探究式教學方法。學習過程一、課前預習指導:1.橢圓的定義
【總結】第三章§3理解教材新知把握熱點考向應用創(chuàng)新演練知識點考點一考點二考點三如圖是阿聯(lián)酋阿布扎比國家展覽中心(ADNEC).阿布扎比是阿聯(lián)酋的首都,這個雙曲線塔形建筑是中東最大的展覽中心.它的形狀就像一條雙曲線.這是雙
2024-11-19 16:28
【總結】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學雙曲線的標準方程課后知能檢測蘇教版選修2-1一、填空題1.(2021·南京高二檢測)雙曲線x25-y24=1的焦點坐標是________.【解析】∵c2=5+4=9,∴c=3,∴F(±3,0).【答案】(
2024-12-05 09:29
【總結】2.雙曲線的簡單幾何性質(zhì)(共2課時)一、教學目標1.了解雙曲線的簡單幾何性質(zhì),如范圍、對稱性、頂點、漸近線和離心率等。2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題。二、教學重點、難點重點:雙曲線的幾何性質(zhì)及初步運用。難點:雙曲線的漸近線。三、教學過程(一)復習提問引入新課1.橢圓有哪些幾何性質(zhì),是
2024-12-08 08:44
【總結】求曲線的方程.一:直接法.例1、△ABC的頂點A固定,點A的對邊BC的長是2a,邊BC上高的長是b,邊BC沿一定直線移動,求△ABC外心的軌跡方程。1、設A,B兩點的坐標分別是(-1,-1),(3,7).求線段AB的垂直平分線的方程練習40頁第2題求曲線的方程.
2024-11-17 15:21
【總結】空間向量基本定理課程目標學習脈絡1.了解空間向量基本定理及其意義,會在簡單問題中選用空間三個不共面的向量作為基底表示其他向量.2.使學生體會從平面到空間的過程,進一步培養(yǎng)學生對空間圖形的想象能力.空間向量基本定理(1)如果向量e1,e2,e3是空間三個不共面的向量,a是空間任一
2024-11-16 23:22