【總結(jié)】立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版1第六章不等式第講立足教育開創(chuàng)未來·高中總復(fù)習(xí)(第一輪)·理科數(shù)學(xué)·全國版2考點搜索●利用基本不等式證明不等式●運用重要不等式求最值
2025-08-11 14:47
【總結(jié)】安徽理工大學(xué)畢業(yè)論文本科畢業(yè)論文關(guān)于均值不等式的探討DISCUSSIONONINEQUALITY學(xué)院(部):理學(xué)院專業(yè)班級:數(shù)學(xué)與應(yīng)用數(shù)學(xué)07-1學(xué)生姓名:吳興奎指導(dǎo)教師:周小紅講師
2025-08-05 04:52
【總結(jié)】第一篇:均值不等式的證明 均值不等式的證明 設(shè)a1,a2,a3...an是n個正實數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡單的詳細過程,謝謝!...
2025-10-27 22:00
【總結(jié)】第一篇:均值不等式及其應(yīng)用 教師寄語:一切的方法都要落實到動手實踐中 高三一輪復(fù)習(xí)數(shù)學(xué)學(xué)案 均值不等式及其應(yīng)用 一.考綱要求及重難點 要求:(?。?,難度為中低檔題,.考點梳理 a+:3;...
2025-10-18 10:26
【總結(jié)】第一篇:均值不等式的應(yīng)用 均值不等式的應(yīng)用 教學(xué)目標: 教學(xué)重點:應(yīng)用教學(xué)難點:應(yīng)用 教學(xué)方法:講練結(jié)合教 具:多媒體教學(xué)過程 一、復(fù)習(xí)引入: ,平均不等式:調(diào)和平均數(shù)≤幾何平均數(shù)≤...
2025-10-18 19:15
【總結(jié)】第一篇:均值不等式教學(xué)設(shè)計 教學(xué)目標 (一)知識與技能:明確均值不等式及其使用條件,能用均值不等式解決簡單的最值問題.(二)過程與方法:通過對問題主動探究,實現(xiàn)定理的發(fā)現(xiàn),體驗知識與規(guī)律的形成...
2025-10-18 19:23
【總結(jié)】均值不等式應(yīng)用(技巧)一.均值不等式1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”),則(當且僅當時取“=”);若,則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”
2025-07-23 23:59
【總結(jié)】課題:基本不等式科目:數(shù)學(xué)教學(xué)對象:高一學(xué)生課時:1課時提供者:李文毅單位:大同四中一、教學(xué)內(nèi)容分析?本節(jié)課《基本不等式》是《數(shù)學(xué)必修五(人教A版)》第三章第四節(jié)的內(nèi)容,主要內(nèi)容是通過現(xiàn)實問題進行數(shù)學(xué)實驗猜想,構(gòu)造數(shù)學(xué)模型,得到均值不等式;并通過在學(xué)習(xí)算術(shù)平均數(shù)與幾何平均數(shù)的定義基礎(chǔ)上,理解均值不等式的幾何解釋;,對于不等式的證明及利用均值不等式求
2025-04-17 00:20
【總結(jié)】......一、選擇題1.若,且,那么的最小值為(???)A.B.C.D.2.設(shè)若的最小值( )A.
2025-03-25 00:08
【總結(jié)】第一篇:均值不等式說課稿 說課題目:高中數(shù)學(xué)人教B版必修第三章第二節(jié) -------均值不等式(1) 一、本節(jié)內(nèi)容的地位和作用 均值不等式又叫做基本不等式,選自人教B版(必修5)的第3章的2節(jié)...
2025-10-27 17:55
【總結(jié)】課堂例題設(shè)計應(yīng)注重“低起點、高觀點、高目標”——均值不等式復(fù)習(xí)課的例題設(shè)計XX省XX中學(xué)【理論指導(dǎo)】:“低起點、高觀點、高目標”的指導(dǎo)方針?!暗推瘘c”要求:從基礎(chǔ)知識入手,即從能反映該學(xué)科領(lǐng)域最基本、最核心
2025-08-01 19:30
【總結(jié)】第一篇:均值不等式練習(xí)題 均值不等式求最值及不等式證明2013/11/2 3題型 一、均值不等式求最值 例題: 1、湊系數(shù):當0x4時,求y=x(8-2x)的最大值。 2、湊項:已知x...
2025-10-27 18:14
【總結(jié)】不等式的證明(4)換元法復(fù)習(xí):分析法:一、三角換元注意點:角的范圍與半徑的范圍二、代數(shù)換元代數(shù)換元:主元;均值代換練習(xí)小結(jié):
2025-11-02 02:53
【總結(jié)】第一篇:淺談均值不等式的教學(xué) 數(shù)理 淺談均值不等式的教學(xué) 岳陽縣第四中學(xué)楊偉 均值不等式是高中數(shù)學(xué)新教材第六章教學(xué)的重點,也是難點,它是證明不等式、解決求最值問題的重要工具,它的應(yīng)用范圍幾乎涉...
2025-10-28 07:26
【總結(jié)】第一篇:均值不等式的證明方法 柯西證明均值不等式的方法byzhangyuong(數(shù)學(xué)之家) 本文主要介紹柯西對證明均值不等式的一種方法,這種方法極其重要。一般的均值不等式我們通??紤]的是An3Gn...
2025-10-18 15:16