【總結(jié)】......高考數(shù)學圓錐曲線部分知識點梳理1、方程的曲線:在平面直角坐標系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關系:(1)曲線上的點的坐標都是這
2025-04-04 05:07
【總結(jié)】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準線方程、焦點坐標等數(shù)據(jù)的幾何意義和相互關系。(2011安徽理2)雙曲線的實軸長是 (A)2 (B)2 (C)4 (D)4【答案】C
2025-04-17 00:20
【總結(jié)】精品資源普通高中課程標準實驗教科書—數(shù)學[人教版]高三新數(shù)學第一輪復習教案(講座33)—圓錐曲線方程及性質(zhì)一.課標要求:1.了解圓錐曲線的實際背景,感受圓錐曲線在刻畫現(xiàn)實世界和解決實際問題中的作用;2.經(jīng)歷從具體情境中抽象出橢圓、拋物線模型的過程,掌握它們的定義、標準方程、幾何圖形及簡單性質(zhì);3.了解雙曲線的定義、幾何圖形和標準方程,知道雙曲線的有關性質(zhì)。二.命題
2025-06-29 16:30
【總結(jié)】圓錐曲線的性質(zhì)及推廣應用江西省撫州一中:張志恒目錄1引言 32圓錐曲線的分類,性質(zhì)及應用 4圓錐曲線的分類 4圓錐曲線的性質(zhì) 5圓錐曲線在生活中的應用 83圓錐曲線性質(zhì)的推廣應用 11直線與圓錐曲線的位置關系的實際應用 11數(shù)學問題在圓錐曲線中的推廣 13
2025-07-25 12:41
【總結(jié)】橢圓中的相關問題一、橢圓中的最值問題:,內(nèi)有一點,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.,,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.3.橢圓上任一點橢圓到兩焦點橢圓,的距離之積的最大值是,最小值是。4.設,則的
2025-07-21 11:38
【總結(jié)】第十章圓錐曲線★知識網(wǎng)絡★橢圓雙曲線拋物線定義定義定義標準方程標準方程幾何性質(zhì)幾何性質(zhì)應用應用標準方程幾何性質(zhì)應用圓錐曲線直線與圓錐曲線位置關系相交相切相離圓錐曲線的弦第1講橢圓★知識梳理★1.橢圓定義:(1)第一定義:平面內(nèi)與兩個定點的距離之和為常數(shù)的動點的軌跡叫橢圓,
2025-08-04 09:58
【總結(jié)】橢圓的定義、性質(zhì)及標準方程1.橢圓的定義:⑴第一定義:平面內(nèi)與兩個定點的距離之和等于常數(shù)(大于)的點的軌跡叫做橢圓。這兩個定點叫做橢圓的焦點,兩焦點的距離叫做橢圓的焦距。⑵第二定義:動點到定點的距離和它到定直線的距離之比等于常數(shù),則動點的軌跡叫做橢圓。定點是橢圓的焦點,定直線叫做橢圓的準線,常數(shù)叫做橢圓的離心率。說明:①若常數(shù)等于,則動點軌跡是線段。②若常數(shù)小于,則動點
2025-08-10 15:59
2025-07-25 00:12
【總結(jié)】圓錐曲線一、知識點1、曲線和方程2、橢圓定義(第一定義、第二定義)3、橢圓標準方程(1、2)與參數(shù)方程4、橢圓性質(zhì):圖像特點、范圍、頂點、離心率、對稱性、準線、焦半徑、通徑等5、橢圓與直線的位置關系二、雙曲線1、定義(第一、第二定義)2、標準方程3、性質(zhì)“圖像、范圍、頂點、離心率、對稱性、準線、漸近線、焦半徑、通徑等4、雙曲線與直
2025-07-23 20:57
【總結(jié)】解析幾何專題六1????1()(2)2ee圓錐曲線的統(tǒng)一性、和諧性從方程的形式看,在直角坐標系中,三類曲線的方程都是二元二次的,所以也叫二次曲線.從點的集合或軌跡的觀點看,它們都是與
2024-11-12 01:26
【總結(jié)】知識點1、直線和圓錐曲線位置關系的判斷2、與弦長有關的問題一、直線與圓錐曲線位置關系的判斷除直線和圓的位置關系外,一般都用代數(shù)法,通過方程組解的個數(shù)判斷直線和曲線的位置關系。(1)△>0方程有兩個不等的實數(shù)根直線與曲線有兩個不同的交點直線和曲線相交(2)△=0方程有兩個相等的實數(shù)根直線與曲線有
2025-05-01 22:17
【總結(jié)】直線和圓錐曲線的位置關系X授課:楊同官直線和圓錐曲線的位置關系一、基礎訓練:2.過點與拋物線只有一個公共點的直線的方程為;1.直線
2024-11-10 22:12
【總結(jié)】聚焦考點直線和圓錐曲線的位置關系 直線與圓錐曲線的位置關系是歷年高考命題的熱點;試題具有一定的綜合性,覆蓋面大,不僅考查“三基”掌握的情況,而且重點考查學生的作圖、數(shù)形結(jié)合、等價轉(zhuǎn)化、分類討論、邏輯推理、合理運算,以及運用數(shù)學知識分析問題和解決問題的能力。在近幾年的高考中,每年風格都在變換,考查思維的敏捷性,在探索中求創(chuàng)新?! 【唧w來說,這些問題常涉及到圓錐曲線
2025-07-22 17:03
【總結(jié)】直線和圓錐曲線經(jīng)??疾榈囊恍╊}型題型五:共線向量問題解析幾何中的向量共線,就是將向量問題轉(zhuǎn)化為同類坐標的比例問題,再通過未達定理------同類坐標變換,將問題解決。此類問題不難解決。例題7、設過點D(0,3)的直線交曲線M:于P、Q兩點,且,求實數(shù)的取值范圍。分析:由可以得到,將P(x1,y1),Q(x2,y2),代人曲線方程,解出點的坐標,用表示出來。解:設P(x1,
2025-07-22 16:58
【總結(jié)】直線和圓錐曲線經(jīng)??疾榈囊恍╊}型直線與橢圓、雙曲線、拋物線中每一個曲線的位置關系都有相交、相切、相離三種情況,從幾何角度可分為三類:無公共點,僅有一個公共點及有兩個相異公共點對于拋物線來說,平行于對稱軸的直線與拋物線相交于一點,但并不是相切;對于雙曲線來說,平行于漸近線的直線與雙曲線只有一個交點,但并不相切.直線和橢圓、雙曲線、拋物線中每一個曲線的公共點問題,可以轉(zhuǎn)化為它們的方程所
2025-07-22 16:59