【總結(jié)】2020年12月16日星期三a(k0)ka(k0)k空間向量的數(shù)乘K=0?0abab+OABCOBOAABCAOAOC????空間向量的加減空間向量的加法、減法與數(shù)乘運(yùn)算bkakbak+??)(數(shù)乘分配律數(shù)乘
2024-11-09 01:05
【總結(jié)】概念向量是由n個(gè)實(shí)數(shù)組成的一個(gè)n行1列(n*1)或一個(gè)1行n列(1*n)的有序數(shù)組;向量的點(diǎn)乘,也叫向量的內(nèi)積、數(shù)量積,對(duì)兩個(gè)向量執(zhí)行點(diǎn)乘運(yùn)算,就是對(duì)這兩個(gè)向量對(duì)應(yīng)位一一相乘之后求和的操作,點(diǎn)乘的結(jié)果是一個(gè)標(biāo)量。點(diǎn)乘公式對(duì)于向量a和向量b:??????????
2025-06-25 02:12
【總結(jié)】2020年12月19日星期六a(k0)ka(k0)k空間向量的數(shù)乘K=0?0abab+OABCOBOAABCAOAOC????空間向量的加減空間向量的加法、減法與數(shù)乘運(yùn)算bkakbak+??)(數(shù)乘分配律數(shù)乘
2024-11-12 01:34
【總結(jié)】向量減法運(yùn)算及其幾何意義問題提出個(gè)向量的和向量分別如何操作?abaabba+ba+b?a+0=0+a=aa與b為相反向量a+b=0a+b=b+a(a+b)+c=a+(b+c)|a+b|≤|a|+|b||a+b|≥||a|-|b||112
2024-11-12 17:26
【總結(jié)】導(dǎo)入新課復(fù)習(xí)上一節(jié)課,我們借助“類比思想”把平面向量的有關(guān)概念及加減運(yùn)算擴(kuò)展到了空間.(1)加法法則及減法法則平行四邊形法則或三角形法則.(2)運(yùn)算律加法交換律及結(jié)合律.兩個(gè)空間向量的加、減法與兩個(gè)平面向量的加、減法實(shí)質(zhì)是
2025-06-12 19:01
【總結(jié)】《平面向量的加法及其幾何意義》教學(xué)案例《向量的加法運(yùn)算及其幾何意義》選自數(shù)學(xué)(基礎(chǔ)模塊),內(nèi)容包括向量加法的三角形法則、平行四邊形法則及應(yīng)用,向量加法的運(yùn)算律及應(yīng)用。本節(jié)課是學(xué)習(xí)平面向量基本概念之后的一節(jié)比較重要的課,通過類比數(shù)的運(yùn)算,研究向量的運(yùn)算及運(yùn)算律,滲透數(shù)學(xué)建模的思想。向量的加法更是后續(xù)學(xué)習(xí)的鋪墊,因?yàn)橄蛄考臃ㄟ\(yùn)算是平面向量的線性運(yùn)算(向量加法、向量減法、向量數(shù)乘運(yùn)算以及它們
2025-06-07 18:55
【總結(jié)】平面向量的線性運(yùn)算向量加法運(yùn)算及其幾何意義問題提出、平行向量、相等向量的含義分別是什么?,向量的大小和方向是如何反映的?什么叫零向量和單位向量?,從而給數(shù)賦予了新的內(nèi)涵.如果向量僅停留在概念的層面上,那是沒有多大意義的.我們希望兩個(gè)向量也能相加,拓展向量的數(shù)學(xué)意義,提升向量的理論價(jià)值,這就需要建立相關(guān)的原理和法則
2024-11-12 16:45
【總結(jié)】復(fù)數(shù)代數(shù)形式的四則運(yùn)算復(fù)數(shù)代數(shù)形式的加減運(yùn)算及其幾何意義我們引入這樣一個(gè)數(shù)i,把i叫做虛數(shù)單位,并且規(guī)定:i2??1;形如a+bi(a,b∈R)的數(shù)叫做復(fù)數(shù).全體復(fù)數(shù)所形成的集合叫做復(fù)數(shù)集,一般用字母C表示.知識(shí)回顧對(duì)虛數(shù)單位i的規(guī)定練習(xí).根據(jù)對(duì)虛數(shù)單位
2024-11-19 13:11
2024-11-11 21:10
【總結(jié)】新授課:復(fù)數(shù)代數(shù)形式的加減運(yùn)算及其幾何意義教學(xué)目標(biāo)重點(diǎn):復(fù)數(shù)代數(shù)形式的加法、減法的運(yùn)算法則.難點(diǎn):復(fù)數(shù)加法、減法的幾何意義.知識(shí)點(diǎn):.掌握復(fù)數(shù)代數(shù)形式的加、減運(yùn)算法則;.理解復(fù)數(shù)代數(shù)形式的加、減運(yùn)算的幾何意義.能力點(diǎn):培養(yǎng)學(xué)生滲透轉(zhuǎn)化、數(shù)形結(jié)合的數(shù)學(xué)思想方法,提高學(xué)生分析問題、解決問題以及運(yùn)算的能力.教育點(diǎn):通過探究學(xué)習(xí),培養(yǎng)學(xué)生互助合作的學(xué)習(xí)習(xí)慣,培養(yǎng)學(xué)生
2025-04-17 00:24
【總結(jié)】向量減法運(yùn)算及其幾何意義一、向量減法法則的理解向量減法的三角形法則的式子內(nèi)容是:兩個(gè)向量相減,則表示兩個(gè)向量起點(diǎn)的字母必須相同(否則無法相減),這樣兩個(gè)向量的差向量是以減向量的終點(diǎn)的字母為起點(diǎn),以被減向量的終點(diǎn)的字母為終點(diǎn)的向量.只要學(xué)生理解法則內(nèi)容,那么解決起向量加減法的題來就會(huì)更加得心應(yīng)手,尤其遇到向量的式子運(yùn)算題時(shí)
2024-11-19 20:38
【總結(jié)】課題平面向量的線性運(yùn)算教學(xué)目標(biāo)知識(shí)與技能理解并掌握加法的概念,了解向量加法的物理意義及其幾何意義.過程與方法掌握向量加法的三角形法則和平行四邊形法則,并能熟練地運(yùn)用這兩個(gè)法則作兩個(gè)向量的加法運(yùn)算.情感態(tài)度價(jià)值觀啟發(fā)引導(dǎo),講練結(jié)合重點(diǎn)向量的加法減法運(yùn)算難點(diǎn)向量加減法的運(yùn)算律
2024-11-19 19:09
【總結(jié)】向量加法運(yùn)算及其幾何意義學(xué)習(xí)目標(biāo):1.理解并掌握加法的概念,了解向量加法的物理意義及其幾何意義.2.掌握向量加法的三角形法則和平行四邊形法則,并能熟練地運(yùn)用這兩個(gè)法則作兩個(gè)向量的加法運(yùn)算.3.了解向量加法的交換律和結(jié)合律,并能依幾何意義作圖解釋加法運(yùn)算律的合理性.學(xué)習(xí)重點(diǎn):向量的加法、減法及幾何意義學(xué)習(xí)難點(diǎn):向量運(yùn)算的幾何意義一
【總結(jié)】向量的加法運(yùn)算及其幾何意義(結(jié))命題方向1向量的三角形法則如下圖中(1)、(2)所示,試作出向量a與b的和.[分析]依據(jù)向量加法的三角形法則,在平面上任取一點(diǎn)O,以O(shè)為起點(diǎn)作出一個(gè)向量等于a,再以終點(diǎn)為起點(diǎn)作下一個(gè)向量等于b,可得出a+b.[解析]如下圖中(1)、(2)所示,首先作OA
2024-11-19 17:41
【總結(jié)】向量加法運(yùn)算及其幾何意義考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難利用向量加法運(yùn)算法則化簡1、2、46向量加法在幾何中的應(yīng)用7、8、9、10、11其他問題3、5121.下列等式不成立的是()A.a(chǎn)+0=aB.a(chǎn)+b=b+a→+BA→=
2024-11-19 20:39