【總結(jié)】上海市虹口高級中學(xué)韓璽一、教學(xué)內(nèi)容分析,所以需牢固掌握.二、教學(xué)目標(biāo)設(shè)計1、掌握簡單的分式不等式的解法.2、體會化歸、等價轉(zhuǎn)換的數(shù)學(xué)思想方法.三、教學(xué)重點及難點重點簡單的分式不等式的解法.難點不等式的同解變形.四、教學(xué)過程設(shè)計一、分式不等式的解法1、引入某地鐵上,甲乙兩人為了趕乘地鐵,分別從樓梯和運行中的自動扶梯上樓(樓梯和自動扶梯
2025-04-16 22:22
【總結(jié)】含參數(shù)的一元二次不等式的解法含參數(shù)的一元二次不等式的解法與具體的一元二次不等式的解法在本質(zhì)上是一致的,這類不等式可從分析兩個根的大小及二次系數(shù)的正負入手去解答,但遺憾的是這類問題始終成為絕大多數(shù)學(xué)生學(xué)習(xí)的難點,此現(xiàn)象出現(xiàn)的根本原因是不清楚該如何對參數(shù)進行討論,而參數(shù)的討論實際上就是參數(shù)的分類,而參數(shù)該如何進行分類?下面我們通過幾個例子體會一下。一.二次項系數(shù)為常數(shù)例1、解關(guān)于x的不
2025-06-25 16:58
【總結(jié)】1、一元二次不等式的解法一化:化二次項前的系數(shù)為正數(shù).二判:判斷對應(yīng)方程的根.三求:求對應(yīng)方程的根.四畫:畫出對應(yīng)函數(shù)的圖象.五解集:根據(jù)圖象寫出不等式的解集.規(guī)律:當(dāng)二次項系數(shù)為正時,小于取中間,大于取兩邊.2、高次不等式的解法:穿根法.分解因式,把根標(biāo)在數(shù)軸上,從右上方依次往下穿(奇穿偶切),結(jié)合原式不等號的方向,寫出不等式的解集.3、分式不等式的解法
2025-06-26 07:14
【總結(jié)】高中數(shù)學(xué)知識專項系列講座含參數(shù)不等式的解法一、含參數(shù)不等式存在解的問題如果不等式(或)的解集是D,的某個取值范圍是E,且DE,則稱不等式在E內(nèi)存在解(或稱有解,有意義).例1.(1)不等式的解集非空,求的取值范圍;(2)不等式的解集為空集,求的取值范圍.(分析:解集非空即指有解,有意義,解集為即指無解(恒不成立),否定之后為恒成立,本題實質(zhì)上是成立與恒成立問題)解
2025-06-25 17:15
【總結(jié)】無理不等式的解法基本概念1、無理不等式:2、無理不等式的類型:根號下含有未知數(shù)的不等式。根式不等式的解法-------例1解不等式解:原不等式可化為根據(jù)根式的意義及不等式的性質(zhì),得解這個不等式組,得所以,原不等式的解集為⊙⊙●根式不等式的解法-------類型(1)
2024-11-10 22:31
【總結(jié)】不等式的證明與解法(復(fù)習(xí)課)1、比較法(1)比較法證明不等式的步驟作差---變形---判斷符號----得出結(jié)論(2)比較法經(jīng)常證明什么樣的不等式高次整式多項式、所證不等式兩邊有相同或局部相同的部分(3)作差之后變形的思維完全平方、因式積一、不
2024-11-06 21:52
【總結(jié)】 一元二次不等式一、知識導(dǎo)學(xué)1.一元一次不等式與一次函數(shù)的關(guān)系對于不等式axb,(1)當(dāng)a0時,解為___________;(2)當(dāng)a<0時,解為____________(3)當(dāng)a=0,b≥0時___________;當(dāng)a=0,b<0時,解為_______________.①作出的圖像,觀察>0,=0,<0的解與圖像的關(guān)系>0的解集表
2025-03-24 23:37
【總結(jié)】第一講不等式解法一、含絕對值的不等式的解法不等式解集或把看成一個整體,化成,型不等式來求解[例題精講]例1.解關(guān)于x的不等式|x-2|0)型?!?4x-24,不等號各端加2,得-2x6?!嗖坏仁浇饧莧x|-2
2025-06-19 08:38
【總結(jié)】......不等式的解法三、解不等式1.解不等式問題的分類(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化為一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解無
2025-06-23 18:52
【總結(jié)】不等式的解法三、解不等式1.解不等式問題的分類(1)解一元一次不等式.(2)解一元二次不等式.(3)可以化為一元一次或一元二次不等式的不等式.①解一元高次不等式;②解分式不等式;③解無理不等式;④解指數(shù)不等式;⑤解對數(shù)不等式;⑥解帶絕對值的不等式;⑦解不等式組.2.解不等式時應(yīng)特別注意下列幾點:(1)正確應(yīng)用不等式的基本性質(zhì).(2)
2025-05-16 05:20
【總結(jié)】第三講絕對值不等式的解法【基本知識】(1)含絕對值的不等式|x|<a與|x|>a的解集不等式a>0a=0a<0|x|<a{x|-a<x<a}|x|>a{x|x>a或x<-a}{x|x∈R且x≠0}R注:|x|以及|x-a|±|x-b|表示的幾何意義(|x|表示數(shù)軸上的點x到原點的距離;|x-a|±|x-b
2025-08-18 16:51
【總結(jié)】§復(fù)習(xí)回顧:.00bcaccbabcaccbacbcaba??????????,那么,如果;,那么,如果;,那么如果2.絕對值的意義:??????????.0000時,當(dāng)時,,當(dāng)時,,當(dāng)xxxxxx1.不等式的性質(zhì):?
2025-07-25 13:30
【總結(jié)】1.不等式的定義:若baba????0baba????0baba????0;;.2.不等式的性質(zhì):推論:若a>b,且c>d,則a+cb+d(同向,可加性)(1)(對稱性)abba???(2)
2025-01-20 01:36
2025-07-24 19:51
【總結(jié)】1一元二次不等式解法【知識要點】)0(42????aacb0??0??0??0)(?xf的解集??21xxxxx??或????????abxx2R0)(?xf的解集??21xxxx????)(
2025-01-07 16:45