【總結(jié)】二次函數(shù)第二章二次函數(shù)導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)學(xué)習(xí)目標(biāo).(重點)..(難點)導(dǎo)入新課情景引入里約奧運會上,哪位奧運健兒給你留下了深刻的印象?你能猜出下面表情包是誰嗎?你們是根據(jù)哪些特征猜出的呢?下面來看傅園慧在里約奧運會賽后的采訪視頻,注意前方高能表情包.
2025-06-18 00:31
2025-06-19 06:55
【總結(jié)】第二章二次函數(shù)知識點1二次函數(shù)的概念y=ax2+bx+c(a,b,c是常數(shù))是二次函數(shù)的條件是(C)≠0且b≠0≠0且b≠0,c≠0≠0,b,c為任意實數(shù)2.若y=(m2+m)????2-2??-1是二次函數(shù),則m的值是(D)A.1±2
2025-06-18 00:42
【總結(jié)】“時間是個常數(shù),但對勤奮者來說,是個‘變數(shù)’。用‘分’來計算時間的人比用‘小時’來計算時間的人時間多59倍?!?---雷巴柯夫y是x的一次函數(shù),請你添加條件___________________,則此函數(shù)的表達(dá)式為_________.已知一次函數(shù)y=kx+b圖象上兩點的坐標(biāo),
2024-11-17 22:39
【總結(jié)】§(2)..?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k?(1)已知二次函數(shù)表達(dá)式中的一個字母系數(shù)和圖像上的一個點的坐標(biāo),可用一般式代入求其表達(dá)式.(2)已知二次函數(shù)頂點坐標(biāo)和圖像上的一個點的坐標(biāo),可設(shè)頂點式代入求其表達(dá)式.解析:設(shè)所求的二次函數(shù)為y=ax2+bx+c,
2024-11-17 08:35
【總結(jié)】勤勉而頑強地鉆研,永遠(yuǎn)可以使你百尺竿頭更進(jìn)一步。
2024-12-07 22:58
【總結(jié)】◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎
2025-06-14 12:05
【總結(jié)】課題:確定二次函數(shù)的表達(dá)式課型:新授課年級:九年級教學(xué)目標(biāo):1.會用待定系數(shù)法確定二次函數(shù)的表達(dá)式.2.能根據(jù)二次函數(shù)圖象上點的特點,靈活選擇合適的表達(dá)式.教學(xué)重、難點:重點:會用待定系數(shù)法確定二次函數(shù)的表達(dá)式.難點:能根據(jù)二次函數(shù)圖象上點的特點,靈活選擇合適的表達(dá)式.課前準(zhǔn)備:多
2024-12-08 05:07
【總結(jié)】課題:確定二次函數(shù)的表達(dá)式課型:新授課年級:九年級教學(xué)目標(biāo):,體會求二次函數(shù)表達(dá)式的思想方法,培養(yǎng)數(shù)學(xué)應(yīng)用意識..、比較、分析、概括等邏輯思維能力引導(dǎo)學(xué)生探索、發(fā)現(xiàn),以培養(yǎng)學(xué)生獨立思考、勇于創(chuàng)新的精神和良好的學(xué)習(xí)習(xí)慣.教學(xué)重點與難點:重點:用待定系數(shù)法求二次函數(shù)的解析式.難點:建立
2024-12-08 10:59
【總結(jié)】?y隨x的而變化的規(guī)律是什么?你能分別用函數(shù)表達(dá)式,表格和圖象表示出來嗎?函數(shù)的表示方式?已知矩形周長20cm,并設(shè)它的一邊長為xcm,面積為ycm2.做一做1駛向勝利的彼岸?勇敢表現(xiàn)獎屬于自信的人!xy?用函數(shù)表達(dá)式表示:解析法—用表達(dá)式表示函數(shù)?已知矩形周長20cm,并設(shè)它的一邊長為xcm
2024-12-07 15:24
【總結(jié)】課題:確定二次函數(shù)的表達(dá)式課型:新授課年級:九年級學(xué)習(xí)目標(biāo):..教學(xué)重點與難點:重點:會用待定系數(shù)法確定二次函數(shù)的表達(dá)式.難點:會求簡單的實際問題中的二次函數(shù)表達(dá)式.教學(xué)過程:一、復(fù)習(xí)回顧?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k[
【總結(jié)】確定二次函數(shù)的表達(dá)式第二課時檢測(時間45分鐘滿分100分)一.選擇題(每小題3分,共50分)1.已知拋物線過點A(2,0),B(﹣1,0),與y軸交于點C,且OC=2.則這條拋物線的解析式為()A.y=x2﹣x﹣2B.y=﹣x2+x+2
2024-11-14 23:16
【總結(jié)】“時間是個常數(shù),但對勤奮者來說,是個‘變數(shù)’。用‘分’來計算時間的人比用‘小時’來計算時間的人時間多59倍。”----雷巴柯夫y是x的一次函數(shù),請你添加條件___________________,則此函數(shù)的表達(dá)式為_________.已知一次函數(shù)y=kx+b圖象上兩點的坐標(biāo),
【總結(jié)】第二章二次函數(shù)本專題包括求圖形面積的最值問題、求拋物線形運動問題、求拋物線形建筑物問題、求銷售中最大利潤問題,是中考常考的題型,特別是利潤問題,是近年考查的熱點題型.類型1求面積(體積)的最值問題1.如圖,有一塊邊長為6cm的正三角形紙板,在它的三個角處分別截去一個彼此全等的箏形,再沿圖中的虛線折起,做成一個無蓋的
2025-06-12 00:36
【總結(jié)】5二次函數(shù)與一元二次方程,體會方程與函數(shù)之間的聯(lián)系.x軸交點的個數(shù)與一元二次方程的根的個數(shù)之間的關(guān)系,理解何時方程有兩個不等的實數(shù)根、兩個相等的實數(shù)根和沒有實數(shù)根.x軸交點的橫坐標(biāo).ax2+bx+c=0的求根公式是什么?當(dāng)b2-4ac≥0時,當(dāng)b2-4ac0時,方程無實數(shù)根.aacbbx2
2025-06-15 02:55