【總結(jié)】橢圓的簡(jiǎn)單幾何性質(zhì)典型例題一例1橢圓的一個(gè)頂點(diǎn)為,其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,求橢圓的標(biāo)準(zhǔn)方程.分析:題目沒有指出焦點(diǎn)的位置,要考慮兩種位置.解:(1)當(dāng)為長(zhǎng)軸端點(diǎn)時(shí),,,橢圓的標(biāo)準(zhǔn)方程為:;(2)當(dāng)為短軸端點(diǎn)時(shí),,,橢圓的標(biāo)準(zhǔn)方程為:;說(shuō)明:橢圓的標(biāo)準(zhǔn)方程有兩個(gè),給出一個(gè)頂點(diǎn)的坐標(biāo)和對(duì)稱軸的位置,是不能確定橢圓的橫豎的,因而要考慮兩種情況.典型例
2025-07-23 06:44
【總結(jié)】質(zhì)D復(fù)習(xí)思考?橢圓的定義、標(biāo)準(zhǔn)方程是什么??平面上到兩個(gè)定點(diǎn)的距離的和(2a)等于定長(zhǎng)(大于|F1F2|)的點(diǎn)的軌跡叫橢圓。?定點(diǎn)F1、F2叫做橢圓的焦點(diǎn)。?兩焦點(diǎn)之間的距離叫做焦距(2C)。)0(12222????babyax)0(12222?
2025-07-25 14:44
【總結(jié)】高二數(shù)學(xué)教(學(xué))案揚(yáng)州市第一中學(xué)第1頁(yè)共4頁(yè)課題:橢圓的幾何性質(zhì)(2)教學(xué)目標(biāo):(對(duì)稱性、范圍、頂點(diǎn)、離心率);.教學(xué)重、難點(diǎn):目標(biāo)1;數(shù)形結(jié)合思想的貫徹,運(yùn)用曲線方程研究幾何性質(zhì).一.教學(xué)過(guò)程:(一)復(fù)習(xí)
2025-08-26 18:33
【總結(jié)】(一)教學(xué)目標(biāo):橢圓的范圍、對(duì)稱性、對(duì)稱中心、離心率及頂點(diǎn)(截距).重點(diǎn)難點(diǎn)分析教學(xué)重點(diǎn):橢圓的簡(jiǎn)單幾何性質(zhì).教學(xué)難點(diǎn):橢圓的簡(jiǎn)單幾何性質(zhì).教學(xué)設(shè)計(jì):【復(fù)習(xí)引入】1.橢圓的定義是什么?2.橢圓的標(biāo)準(zhǔn)方程是什么?【講授新課】利用橢圓的標(biāo)準(zhǔn)方程研究橢圓的幾何性質(zhì).以焦點(diǎn)在x軸上橢圓為例
2024-11-26 18:45
【總結(jié)】橢圓的標(biāo)準(zhǔn)方程及其幾何性質(zhì)1.橢圓定義:(1)第一定義:平面內(nèi)與兩個(gè)定點(diǎn)的距離之和為常數(shù)的動(dòng)點(diǎn)的軌跡叫橢圓,其中兩個(gè)定點(diǎn)叫橢圓的焦點(diǎn).當(dāng)時(shí),的軌跡為橢圓;;當(dāng)時(shí),的軌跡不存在;當(dāng)時(shí),的軌跡為以為端點(diǎn)的線段(2)橢圓的第二定義:平面內(nèi)到定點(diǎn)與定直線(定點(diǎn)不在定直線上)的距離之比是常數(shù)()的點(diǎn)的軌跡為橢圓(利用第二定義,可以實(shí)現(xiàn)橢圓
2025-07-15 00:24
【總結(jié)】橢圓的幾何性質(zhì)一、概念及性質(zhì)“范圍、對(duì)稱性、頂點(diǎn)、軸長(zhǎng)、焦距、離心率及范圍、a,b,c的關(guān)系”;:::主要用來(lái)求離心率的取值范圍,對(duì)于此問(wèn)題也可以用下列性質(zhì)求解:.::【注】:橢圓的幾何性質(zhì)是高考的熱點(diǎn),高考中多以小題出現(xiàn),試題難度一般較大,高考對(duì)橢圓幾何性質(zhì)的考查主要有以下三個(gè)命題角度:(1)根據(jù)橢圓的性質(zhì)求參數(shù)的值或范圍;(2)由性質(zhì)寫橢圓的標(biāo)準(zhǔn)方程;
2025-03-25 04:50
【總結(jié)】復(fù)習(xí)::在同一平面內(nèi),到兩定點(diǎn)F1、F2的距離和為常數(shù)(大于|F1F2|)的點(diǎn)的軌跡叫做橢圓。:22221(0)xyabab????22221(0)yxabab????a,b,c的關(guān)系是:a2=b2+c2一、橢圓的范圍oxy由122
2025-01-19 22:19
【總結(jié)】第一節(jié)橢圓的標(biāo)準(zhǔn)方程考點(diǎn)一求橢圓的標(biāo)準(zhǔn)方程【思路點(diǎn)撥】先判斷焦點(diǎn)位置,確定出適合題意的橢圓標(biāo)準(zhǔn)方程的形式,最后由條件確定出a和b即可.【例1】求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別為(-4,0)和(4,0),且橢圓經(jīng)過(guò)點(diǎn)(5,0);(2)焦點(diǎn)在y軸上,且經(jīng)過(guò)兩個(gè)點(diǎn)(0,2)和(1,0)。變∶根據(jù)下列條件,求橢圓
2025-07-15 02:23
【總結(jié)】課題:橢圓的定義及幾何性質(zhì)汝城一中高三文科數(shù)學(xué)組(1)橢圓的第一定義為:平面內(nèi)與兩個(gè)定點(diǎn)F1、F2的距離之和為常數(shù)(大于|F1F2|)(2)橢圓的第二定義為:平面內(nèi)到一定點(diǎn)F與到一定直線l的距離之比為一常數(shù)e(0<e<1)的點(diǎn)的軌跡叫做橢圓一、基礎(chǔ)知識(shí)復(fù)習(xí)標(biāo)準(zhǔn)方程
2024-11-09 06:05
【總結(jié)】一.教學(xué)內(nèi)容:??????橢圓的幾何性質(zhì)?二.教學(xué)目標(biāo):通過(guò)橢圓標(biāo)準(zhǔn)方程的討論,使學(xué)生掌握橢圓的幾何性質(zhì),能正確地畫出橢圓的圖形,并了解橢圓的一些實(shí)際應(yīng)用.通過(guò)對(duì)橢圓的幾何性質(zhì)的教學(xué),培養(yǎng)學(xué)生分析問(wèn)題和解決實(shí)際問(wèn)題的能力.使學(xué)生掌握利用方程研究曲線性質(zhì)的基本方法,加深對(duì)直角坐標(biāo)系中曲線與方程的
2025-07-23 11:21
【總結(jié)】幾何性質(zhì)(二)1.橢圓的長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為,半焦距為,離心率為,焦點(diǎn)坐標(biāo)為,頂點(diǎn)坐標(biāo)為.復(fù)習(xí)導(dǎo)入:81922??yx1.橢圓的長(zhǎng)軸長(zhǎng)為,短軸長(zhǎng)為,半焦距為,離心率為
2025-01-06 14:41
【總結(jié)】復(fù)習(xí)::到兩定點(diǎn)F1、F2的距離之和為常數(shù)(大于|F1F2|)的動(dòng)點(diǎn)的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當(dāng)焦點(diǎn)在X軸上時(shí)當(dāng)焦點(diǎn)在Y軸上時(shí))0(12222????babyax)0(12222
2024-11-17 19:25
【總結(jié)】橢圓的幾何性質(zhì)知識(shí)回顧1F2Fxyo...M(x,y)(-c,0)(c,0)F1(0,-c)F2(0,c)xy0M(x,y)...12222??byax橢圓的標(biāo)準(zhǔn)方程:12222??bxay焦點(diǎn)在x軸時(shí)焦點(diǎn)
2025-07-25 10:43
【總結(jié)】橢圓方程及幾何性質(zhì)基礎(chǔ)知識(shí)梳理1.橢圓的定義(1)平面內(nèi)一點(diǎn)P與兩定點(diǎn)F1、F2的距離的和等于常數(shù)(大于|F1F2|)的點(diǎn)的軌跡,即若常數(shù)等于|F1F2|,則軌跡是.若常數(shù)小于|F1F2|,則軌跡
2025-04-29 12:12
【總結(jié)】復(fù)習(xí)思考?橢圓的定義、標(biāo)準(zhǔn)方程是什么??平面上到兩個(gè)定點(diǎn)的距離的和(2a)等于定長(zhǎng)(大于|F1F2|)的點(diǎn)的軌跡叫橢圓。?定點(diǎn)F1、F2叫做橢圓的焦點(diǎn)。?兩焦點(diǎn)之間的距離叫做焦距(2C)。)0(12222????babyax)0(12222????bab
2025-07-25 15:26