【總結(jié)】草演他山之石可以攻玉學(xué)海無涯揚(yáng)帆起航《二次函數(shù)之面積問題》預(yù)習(xí)指南一、填寫下列有關(guān)一次函數(shù)之面積問題的內(nèi)容1.坐標(biāo)系中處理面積問題,要尋找并利用_____________的線,通常有以下三種思路:①__________________(規(guī)則圖形);②__________________(分割求和、補(bǔ)形作差);③__________________(例
2025-04-04 04:24
【總結(jié)】成都市中考壓軸題(二次函數(shù))精選【例一】.如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點(diǎn),并與直線y=kx交于A、B兩點(diǎn),直線l過點(diǎn)E(0,﹣2)且平行于x軸,過A、B兩點(diǎn)分別作直線l的垂線,垂足分別為點(diǎn)M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當(dāng)k=0時(shí),直線y=kx與x軸重合,求出此時(shí)的值;②試說明無論k取何值,
2025-04-04 04:25
【總結(jié)】·高中總復(fù)習(xí)(第1輪)·理科數(shù)學(xué)·全國版1第講7二次函數(shù)(第一課時(shí))第二章函數(shù)·高中總復(fù)習(xí)(第1輪)·理科數(shù)學(xué)·全國版2考點(diǎn)搜索●二次函數(shù)的基本知識(shí)●實(shí)系數(shù)二次方程ax2+bx+
2025-08-11 14:48
【總結(jié)】九年級數(shù)學(xué)(下)第二章二次函數(shù)6.何時(shí)獲得最大利潤(1)二次函數(shù)的應(yīng)用陽泉市義井中學(xué)高鐵牛?請你幫助分析:銷售單價(jià)是多少時(shí),可以獲利最多?何時(shí)獲得最大利潤?某商店經(jīng)營T恤衫,已知成批購進(jìn)時(shí)單價(jià)是.根據(jù)市場調(diào)查,銷售量與銷售單價(jià)滿足如下關(guān)系:在某一時(shí)間內(nèi),單價(jià)是,銷售量是500件,而單價(jià)每降低1
2024-11-06 18:08
【總結(jié)】1、中考要求:1.經(jīng)歷探索、分析和建立兩個(gè)變量之間的二次函數(shù)關(guān)系的過程,進(jìn)一步體驗(yàn)如何用數(shù)學(xué)的方法描述變量之間的數(shù)量關(guān)系.2.能用表格、表達(dá)式、圖象表示變量之間的二次函數(shù)關(guān)系,發(fā)展有條理的思考和語言表達(dá)能力;能根據(jù)具體問題,選取適當(dāng)?shù)姆椒ū硎咀兞恐g的二次函數(shù)關(guān)系.3.會(huì)作二次函數(shù)的圖象,并能根據(jù)圖象對二次函數(shù)的性質(zhì)進(jìn)行分析,逐步積累研究函數(shù)性質(zhì)的經(jīng)驗(yàn).
2025-01-10 10:56
【總結(jié)】二次函數(shù)的最值問題重點(diǎn)掌握閉區(qū)間上的二函數(shù)的最值問題難點(diǎn)了解并會(huì)處理含參數(shù)的二次函數(shù)的最值問題核心區(qū)間與對稱軸的相對位置思想數(shù)形結(jié)合分類討論復(fù)習(xí)引入頂點(diǎn)式:y=a(x-m)2+n(a0)兩根式:y=a(x-x1)(x-x2)(a0)
2024-11-11 21:11
【總結(jié)】二次函數(shù)的最值二次函數(shù)的最值問題重點(diǎn)掌握閉區(qū)間上的二函數(shù)的最值問題難點(diǎn)了解并會(huì)處理含參數(shù)的二次函數(shù)的最值問題核心區(qū)間與對稱軸的相對位置思想數(shù)形結(jié)合分類討論復(fù)習(xí)引入頂點(diǎn)式:y=a(x-m)2+n(a0)兩根式:y
2024-11-10 00:49
【總結(jié)】二次函數(shù)中絕對值問題的求解策略二次函數(shù)是高中函數(shù)知識(shí)中一顆璀璨的“明珠”,而它與絕對值知識(shí)的綜合,往往能夠演繹出一曲優(yōu)美的“交響樂”,故成為高考“新寵”。二次函數(shù)和絕對值所構(gòu)成的綜合題,由于知識(shí)的綜合性、題型的新穎性、解題方法的靈活性、思維方式的抽象性,學(xué)習(xí)解題時(shí)往往不得要領(lǐng),現(xiàn)從求解策略出發(fā),對近年來各類考試中的部分相關(guān)考題,進(jìn)行分類剖析,歸納出一般解題思考方法。一、適時(shí)用分類,討
2025-04-04 04:23
【總結(jié)】二次函數(shù)在給定區(qū)間上的最值問題【學(xué)前思考】二次函數(shù)在閉區(qū)間上取得最值時(shí)的,只能是其圖像的頂點(diǎn)的橫坐標(biāo)或給定區(qū)間的端點(diǎn).因此,影響二次函數(shù)在閉區(qū)間上的最值主要有三個(gè)因素:拋物線的開口方向、對稱軸以及給定區(qū)間的位置.在這三大因素中,最容易確定的是拋物線的開口方向(與二次項(xiàng)系數(shù)的正負(fù)有關(guān)),而關(guān)于對稱軸與給定區(qū)間的位置關(guān)系的討論是解決二次函數(shù)在給定區(qū)間上的最值問題的關(guān)鍵.
【總結(jié)】1.如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A和點(diǎn)B,其中點(diǎn)A的坐標(biāo)為(﹣2,0),拋物線的對稱軸x=1與拋物線交于點(diǎn)D,與直線BC交于點(diǎn)E.(1)求拋物線的解析式;(2)若點(diǎn)F是直線BC上方的拋物線上的一個(gè)動(dòng)點(diǎn),是否存在點(diǎn)F使四邊形ABFC的面積為17,若存在,求出點(diǎn)F的坐標(biāo);若不存在,請說明理由;2.已知在平面直
【總結(jié)】第五節(jié)二次函數(shù)(2)二次函數(shù)有如下性質(zhì):①函數(shù)的圖象是__________,拋物線頂點(diǎn)的坐標(biāo)是________,拋物線的對稱軸是________;②當(dāng)a0時(shí),拋物線開口______,函數(shù)在x=處取____值________;在區(qū)間________上是減函數(shù),在________上是增函數(shù);③當(dāng)a0
2024-11-12 01:26
【總結(jié)】二次函數(shù)教學(xué)設(shè)計(jì)課型:新授課課時(shí):一課時(shí)年級:九年級一、教材分析《二次函數(shù)》是浙教版《數(shù)學(xué)》九年級上冊中的第一章第一節(jié),是《義務(wù)教育課程標(biāo)準(zhǔn)》“數(shù)與代數(shù)”領(lǐng)域的內(nèi)容。二次函數(shù)是九年級的第一節(jié)函數(shù)課,初中涉及到的“一元一次方程”,“二元一次方程組”,“一次函數(shù)”,“一元二次方程”,“反比例函數(shù)”這幾章代數(shù)的學(xué)習(xí)都為接下來的函數(shù)的進(jìn)一步學(xué)習(xí)奠定了基礎(chǔ)?!岸魏瘮?shù)”的學(xué)習(xí)
2025-04-07 02:41
【總結(jié)】二次函數(shù)應(yīng)用題利潤問題例1、商場促銷,將每件進(jìn)價(jià)為80元的服裝按原價(jià)100元出售,一天可售出140件,后經(jīng)市場調(diào)查發(fā)現(xiàn),該服裝的單價(jià)每降低1元,其銷量可增加10件現(xiàn)設(shè)一天的銷售利潤為y元,降價(jià)x元。(1)求按原價(jià)出售一天可得多少利潤?(2)求銷售利潤y與降價(jià)x的的關(guān)系式(3)商場要使每天利潤為2850元并且使得玩家得到實(shí)惠,應(yīng)該降價(jià)多少元?(4)要使利潤最大,則需降價(jià)多少
【總結(jié)】石家莊e度論壇初中數(shù)學(xué)二次函數(shù)做題技巧一般地,自變量x和因變量y之間存在如下關(guān)系:?y=ax^2+bx+c(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a0時(shí),開口方向向上,a0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大.)則稱y為x的二次函數(shù)。二次函數(shù)表
2025-04-04 03:45
【總結(jié)】二次函數(shù)單元卷一、選擇題,自變量x的值是()A.2B.-2C.1D.-1000xxxyyy1-1-10xy1()ABC