【總結(jié)】八年級(jí)上冊(cè)同學(xué)當(dāng)堂檢測(cè)我的個(gè)性化教案八年級(jí)上冊(cè)幾何題專(zhuān)題訓(xùn)練50題1.如圖,已知△EAB≌△DCE,AB,EC分別是兩個(gè)三角形的最長(zhǎng)邊,∠A=∠C=35°,∠CDE=100°,∠DEB=10°,求∠AEC的度數(shù).2.如
2025-04-07 20:38
【總結(jié)】第一篇:高中數(shù)學(xué)幾何證明題 新課標(biāo)立體幾何??甲C明題匯總 1、已知四邊形ABCD是空間四邊形,E,F,G,H分別是邊AB,BC,CD,DA的中點(diǎn) (1)求證:EFGH是平行四邊形 (2)若 ...
2025-10-13 21:58
【總結(jié)】重慶中考(往屆)數(shù)學(xué)24題專(zhuān)題練習(xí) 1、如圖,等腰梯形ABCD中,AD∥BC,AB=DC,E為AD中點(diǎn),連接BE,CE (1)求證:BE=CE; (2)若∠BEC=90°,過(guò)點(diǎn)B作BF⊥CD,垂...
2025-10-20 00:50
【總結(jié)】第一篇:幾何證明題(難) 附加題: 1、已知:如圖,△ABC中,AG⊥BC于點(diǎn)G,以A為直角頂點(diǎn),分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過(guò)點(diǎn)E、F作射線(xiàn)GA的...
2025-10-12 22:37
【總結(jié)】第一篇:幾何證明題大全 幾何證明題 ,BD,CE是邊AC,AB上的中點(diǎn),BD與CE相交于點(diǎn)O,BO與OD的長(zhǎng)度有什么關(guān)系?BC邊上的中線(xiàn)是否一定過(guò)點(diǎn)O?為什么? 答題要求:請(qǐng)寫(xiě)出詳細(xì)的證明過(guò)程,...
2025-10-13 00:16
【總結(jié)】1過(guò)兩點(diǎn)有且只有一條直線(xiàn)2兩點(diǎn)之間線(xiàn)段最短3同角或等角的補(bǔ)角相等4同角或等角的余角相等5過(guò)一點(diǎn)有且只有一條直線(xiàn)和已知直線(xiàn)垂直6直線(xiàn)外一點(diǎn)與直線(xiàn)上各點(diǎn)連接的所有線(xiàn)段中,垂線(xiàn)段最短7平行公理經(jīng)過(guò)直線(xiàn)外一點(diǎn),有且只有一條直線(xiàn)與這條直線(xiàn)平行8如果兩條直線(xiàn)都和第三條直線(xiàn)平行,這兩條直線(xiàn)也互相平行9同位角相等,兩直線(xiàn)平行10內(nèi)錯(cuò)角相等,兩直線(xiàn)平行
2025-08-05 03:51
【總結(jié)】第一篇:高中幾何證明題 高中幾何證明題 如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,點(diǎn)E在棱CC1的延長(zhǎng)線(xiàn)上,且CC1=C1E=BC=1/2AB=1.(1)求證,D1E//平面ACB1 (2)求...
2025-10-13 22:06
【總結(jié)】第一篇:初中幾何證明題 (1)如圖,在三角形ABC中,BD,CE是高,F(xiàn)G分別為ED,BC的中點(diǎn),O是外心,求證AO∥FG問(wèn)題補(bǔ)充: 證明:延長(zhǎng)AO,交圓O于M,連接BM,則:∠ABM=90°,且...
2025-10-15 21:41
【總結(jié)】第一篇:幾何證明題方法 (初中、高中)幾何證明題一些技巧 初中幾何證明技巧(分類(lèi)) 證明兩線(xiàn)段相等 。 。 。 。 。 。 。 。*(或等圓)中等弧所對(duì)的弦或與圓心等距的兩弦或等...
2025-10-18 15:56
【總結(jié)】中考數(shù)學(xué)經(jīng)典幾何證明題(一)1.(1)如圖1所示,在四邊形中,=,與相交于點(diǎn),分別是的中點(diǎn),聯(lián)結(jié),分別交、于點(diǎn),試判斷的形狀,并加以證明;(2)如圖2,在四邊形中,若,分別是的中點(diǎn),聯(lián)結(jié)FE并延長(zhǎng),分別與的延長(zhǎng)線(xiàn)交于點(diǎn),請(qǐng)?jiān)趫D2中畫(huà)圖并觀察,圖中是否有相等的角,若有,請(qǐng)直接寫(xiě)出結(jié)論:;(3)如圖3,在中,,點(diǎn)在上,,分別是的中點(diǎn),聯(lián)結(jié)并延長(zhǎng),與
2025-04-04 03:01
【總結(jié)】空間幾何證明A1ED1C1B1DCBA1、如圖,在正方體中,是的中點(diǎn),求證:平面。2、已知中,面,,求證:面.3、正方體中,求證:(1);4、正方體ABCD—A1B1C1D1中.(1)求證
2025-03-25 06:42
【總結(jié)】1、垂直于同一條直線(xiàn)的兩條直線(xiàn)一定A、平行B、相交C、異面D、以上都有可能2、a,b,c表示直線(xiàn),M表示平面,給出下列四個(gè)命題:①若a∥M,b∥M,則a∥b;②若bM,a∥b,則a∥M;③若a⊥c,b⊥c,則a∥b;④若a⊥M,b⊥M,則a∥ A、0個(gè) B、1個(gè)
2025-03-25 02:03
【總結(jié)】初二數(shù)學(xué)平行四邊形:幾何證明題ABEFCGDH,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),順次連接EF、FG、GH、HE.(1)請(qǐng)判斷四邊形EFGH的形狀,并給予證明;(2)試探究當(dāng)滿(mǎn)足什么條件時(shí),使四邊形EFGH是菱形,并說(shuō)明理由。,在直角三角形ABC中,∠ACB=90°,AC=BC=10,將△A
2025-04-04 03:51
【總結(jié)】第一篇:中考幾何證明題復(fù)習(xí) 中考復(fù)習(xí) (二)中考復(fù)習(xí):幾何證明題 說(shuō)明一:在直角三角形中,或是題中出現(xiàn)多個(gè)直角時(shí),要證明兩個(gè)角相等,涉及到的知識(shí)點(diǎn): 同角(或等角)的余角相等。 例1:已知:...
2025-10-06 17:33
【總結(jié)】幾何證明、B、C在同一直線(xiàn)上,在直線(xiàn)AC的同側(cè)作和,連接AF,CE.取AF、CE的中點(diǎn)M、N,連接BM,BN,MN.(1)若和是等腰直角三角形,且(如圖1),則是 三角形.(2)在和中,若BA=BE,BC=BF,且,(如圖2),則是 三角形,且.(3)若將(2)中的繞點(diǎn)B旋轉(zhuǎn)一定角度,(如同3),其他條件不變,那么(2)中的結(jié)論是否成立?若成立,
2025-03-24 12:34