freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

概率(韓旭里)習(xí)題解答-文庫吧

2025-03-11 01:55 本頁面


【正文】 },B={出現(xiàn)反面次數(shù)多于正面次數(shù)},由對(duì)稱性知P(A)=P(B)(1) 當(dāng)n為奇數(shù)時(shí),正、(A)+P(B)=1得P(A)=P(B)=(2) 當(dāng)n為偶數(shù)時(shí),由上題知45.設(shè)甲擲均勻硬幣n+1次,乙擲n次,求甲擲出正面次數(shù)多于乙擲出正面次數(shù)的概率.【解】 令甲正=甲擲出的正面次數(shù),甲反=甲擲出的反面次數(shù).乙正=乙擲出的正面次數(shù),乙反=乙擲出的反面次數(shù).顯然有=(甲正≤乙正)=(n+1甲反≤n乙反)=(甲反≥1+乙反)=(甲反乙反)由對(duì)稱性知P(甲正乙正)=P(甲反乙反)因此P(甲正乙正)=46.證明“確定的原則”(Surething):若P(A|C)≥P(B|C),P(A|)≥P(B|),則P(A)≥P(B).【證】由P(A|C)≥P(B|C),得即有 同理由 得 故 ,有k(k≥n).【解】 設(shè)Ai={第i節(jié)車廂是空的},(i=1,…,n),則其中i1,i2,…,in1是1,2,…,n中的任n1個(gè).顯然n節(jié)車廂全空的概率是零,于是 故所求概率為,某一事件A出現(xiàn)的概率為ε:不論ε0如何小,只要不斷地獨(dú)立地重復(fù)做此試驗(yàn),則A遲早會(huì)出現(xiàn)的概率為1.【證】在前n次試驗(yàn)中,A至少出現(xiàn)一次的概率為,n只次品硬幣(次品硬幣的兩面均印有國徽).在袋中任取一只,將它投擲r次,?【解】設(shè)A={投擲硬幣r次都得到國徽}B={這只硬幣為正品}由題知 則由貝葉斯公式知 (Banach)火柴盒問題:某數(shù)學(xué)家有甲、乙兩盒火柴,每盒有N根火柴,?第一次用完一盒火柴時(shí)(不是發(fā)現(xiàn)空)而另一盒恰有r根的概率又有多少?【解】以BB2記火柴取自不同兩盒的事件,則有.(1)發(fā)現(xiàn)一盒已空,另一盒恰剩r根,說明已取了2nr次,設(shè)n次取自B1盒(已空),nr次取自B2盒,第2nr+1次拿起B(yǎng)1,發(fā)現(xiàn)已空。把取2nr次火柴視作2nr重貝努里試驗(yàn),則所求概率為式中2反映B1與B2盒的對(duì)稱性(即也可以是B2盒先取空).(2) 前2nr1次取火柴,有n1次取自B1盒,nr次取自B2盒,第2nr次取自B1盒,故概率為51.求n重貝努里試驗(yàn)中A出現(xiàn)奇數(shù)次的概率.【解】 以上兩式相減得所求概率為若要求在n重貝努里試驗(yàn)中A出現(xiàn)偶數(shù)次的概率,則只要將兩式相加,即得.,B是任意兩個(gè)隨機(jī)事件,求P{(+B)(A+B)(+)(A+)}的值.【解】因?yàn)椋ˋ∪B)∩(∪)=A∪B(∪B)∩(A∪)=AB∪所求  故所求值為0.,A,B和C滿足條件:ABC=F,P(A)=P(B)=P(C) 1/2,且P(A∪B∪C)=9/16,求P(A).【解】由 故或,按題設(shè)P(A),故P(A)=.,A發(fā)生B不發(fā)生的概率與B發(fā)生A不發(fā)生的概率相等,求P(A).【解】 ① ②故 故 ③由A,B的獨(dú)立性,及①、③式有 故 故 或(舍去)即P(A)=.y (a為正常數(shù))內(nèi)擲一點(diǎn),點(diǎn)落在半圓內(nèi)任何區(qū)域的概率與區(qū)域的面積成正比,則原點(diǎn)和該點(diǎn)的連線與x軸的夾角小于π/4的概率為多少?【解】利用幾何概率來求,故所求概率為56.設(shè)10件產(chǎn)品中有4件不合格品,從中任取兩件,已知所取兩件產(chǎn)品中有一件是不合格品,求另一件也是不合格品的概率.【解】 設(shè)A={兩件中至少有一件是不合格品},B={另一件也是不合格品}、15名和25名考生的報(bào)名表,其中女生的報(bào)名表分別為3份、從中先后抽出兩份.(1) 求先抽到的一份是女生表的概率p;(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q. 【解】設(shè)Ai={報(bào)名表是取自第i區(qū)的考生},i=1,2,3.Bj={第j次取出的是女生表},j=1,2.則 (1) (2) 而 故 58. 設(shè)A,B為隨機(jī)事件,且P(B)0,P(A|B)=1,試比較P(A∪B)與P(A)的大小. (2006研考)解:因?yàn)? 所以 .習(xí)題二,編號(hào)為1,2,3,4,5,在其中同時(shí)取3只,以X表示取出的3只球中的最大號(hào)碼,寫出隨機(jī)變量X的分布律.【解】故所求分布律為X345P,在其中取3次,每次任取1只,作不放回抽樣,以X表示取出的次品個(gè)數(shù),求:(1) X的分布律;(2) X的分布函數(shù)并作圖;(3).【解】故X的分布律為X012P(2) 當(dāng)x0時(shí),F(xiàn)(x)=P(X≤x)=0當(dāng)0≤x1時(shí),F(xiàn)(x)=P(X≤x)=P(X=0)= 當(dāng)1≤x2時(shí),F(xiàn)(x)=P(X≤x)=P(X=0)+P(X=1)=當(dāng)x≥2時(shí),F(xiàn)(x)=P(X≤x)=1故X的分布函數(shù)(3) ,求3次射擊中擊中目標(biāo)的次數(shù)的分布律及分布函數(shù),并求3次射擊中至少擊中2次的概率.【解】=0,1,2,3.故X的分布律為X0123P分布函數(shù)4.(1) 設(shè)隨機(jī)變量X的分布律為P{X=k}=,其中k=0,1,2,…,λ>0為常數(shù),試確定常數(shù)a.(2) 設(shè)隨機(jī)變量X的分布律為P{X=k}=a/N, k=1,2,…,N,試確定常數(shù)a.【解】(1) 由分布律的性質(zhì)知故 (2) 由分布律的性質(zhì)知即 .、乙兩人投籃,,今各投3次,求:(1) 兩人投中次數(shù)相等的概率。(2) 甲比乙投中次數(shù)多的概率.【解】分別令X、Y表示甲、乙投中次數(shù),則X~b(3,),Y~b(3,)(1) + (2) =,,(每條跑道只能允許一架飛機(jī)降落)?【解】設(shè)X為某一時(shí)刻需立即降落的飛機(jī)數(shù),則X~b(200,),設(shè)機(jī)場需配備N條跑道,則有即 利用泊松近似查表得N≥.,每天有大量汽車通過,,在某天的該時(shí)段內(nèi)有1000輛汽車通過,問出事故的次數(shù)不小于2的概率是多少(利用泊松定理)?【解】設(shè)X表示出事故的次數(shù),則X~b(1000,) {X=1}=P{X=2},求概率P{X=4}.【解】設(shè)在每次試驗(yàn)中成功的概率為p,則故 所以 .,當(dāng)A發(fā)生不少于3次時(shí),指示燈發(fā)出信號(hào),(1) 進(jìn)行了5次獨(dú)立試驗(yàn),試求指示燈發(fā)出信號(hào)的概率;(2) 進(jìn)行了7次獨(dú)立試驗(yàn),試求指示燈發(fā)出信號(hào)的概率.【解】(1) 設(shè)X表示5次獨(dú)立試驗(yàn)中A發(fā)生的次數(shù),則X~6(5,)(2) 令Y表示7次獨(dú)立試驗(yàn)中A發(fā)生的次數(shù),則Y~b(7,)(1/2)t的泊松分布,而與時(shí)間間隔起點(diǎn)無關(guān)(時(shí)間以小時(shí)計(jì)).(1) 求某一天中午12時(shí)至下午3時(shí)沒收到呼救的概率;(2) 求某一天中午12時(shí)至下午5時(shí)至少收到1次呼救的概率.【解】(1) (2) {X=k}=, k=0,1,2P{Y=m}=, m=0,1,2,3,4分別為隨機(jī)變量X,Y的概率分布,如果已知P{X≥1}=,試求P{Y≥1}.【解】因?yàn)椋?而 故得 即 從而 ,試求在這2000冊(cè)書中恰有5冊(cè)錯(cuò)誤的概率.【解】令X為2000冊(cè)書中錯(cuò)誤的冊(cè)數(shù),則X~b(2000,).利用泊松近似計(jì)算,得 ,成功的概率為,試寫出X的分布律,并計(jì)算X取偶數(shù)的概率.【解】,每個(gè)參加保險(xiǎn)的人在1月1日須交12元保險(xiǎn)費(fèi),:(1) 保險(xiǎn)公司虧本的概率。(2) 保險(xiǎn)公司獲利分別不少于10000元、20000元的概率.【解】以“年”為單位來考慮.(1) 在1月1日,保險(xiǎn)公司總收入為250012=30000元.設(shè)1年中死亡人數(shù)為X,則X~b(2500,),則所求概率為由于n很大,p很小,λ=np=5,故用泊松近似,有(2) P(保險(xiǎn)公司獲利不少于10000) 即保險(xiǎn)公司獲利不少于10000元的概率在98%以上P(保險(xiǎn)公司獲利不少于20000) 即保險(xiǎn)公司獲利不少于20000元的概率約為62%f(x)=Ae|x|, ∞x+∞,求:(1)A值;(2)P{0X1}。 (3) F(x).【解】(1) 由得故 .(2) (3) 當(dāng)x0時(shí),當(dāng)x≥0時(shí), 故 ,電子管使用壽命X的密度函數(shù)為f(x)=求:(1) 在開始150小時(shí)內(nèi)沒有電子管損壞的概率;(2) 在這段時(shí)間內(nèi)有一只電子管損壞的概率;(3) F(x).【解】(1) (2) (3) 當(dāng)x100時(shí)F(x)=0當(dāng)x≥100時(shí) 故 [0,a]上任意投擲一個(gè)質(zhì)點(diǎn),以X表示這質(zhì)點(diǎn)的坐標(biāo),設(shè)這質(zhì)點(diǎn)落在[0,a]中任意小區(qū)間內(nèi)的概率與這小區(qū)間長度成正比例,試求X的分布函數(shù).【解】 由題意知X~∪[0,a],密度函數(shù)為故當(dāng)x0時(shí)F(x)=0當(dāng)0≤x≤a時(shí)當(dāng)xa時(shí),F(xiàn)(x)=1即分布函數(shù)[2,5],求至少有2次的觀測值大于3的概率.【解】X~U[2,5],即故所求概率為(以分鐘計(jì)),以Y表示一個(gè)月內(nèi)他未等到服務(wù)而離開窗口的次數(shù),試寫出Y的分布律,并求P{Y≥1}.【解】依題意知,即其密度函數(shù)為該顧客未等到服務(wù)而離開的概率為,即其分布律為,所需時(shí)間X服從N(40,102);第二條路程較長,但阻塞少,所需時(shí)間X服從N(50,42).(1) 若動(dòng)身時(shí)離火車開車只有1小時(shí),問應(yīng)走哪條路能乘上火車的把握大些?(2) 又若離火車開車時(shí)間只有45分鐘,問應(yīng)走哪條路趕上火車把握大些?【解】(1) 若走第一條路,X~N(40,102),則若走第二條路,X~N(50,42),則++故走第二條路乘上火車的把握大些.(2) 若X~N(40,102),則若X~N(50,42),則 故走第一條路乘上火車的把握大些.~N(3,22),(1) 求P{2X≤5},P{4X≤10},P{|X|>2},P{X>3}。(2) 確定c使P{X>c}=P{X≤c}.【解】(1) (2) c=3(cm)X~N(,),177。,求一螺栓為不合格品的概率.【解】 (小時(shí))服從正態(tài)分布N(160,σ2),若要求P{120<X≤200=≥,允許σ最大不超過多少?【解】 故 F(x)=(1) 求常數(shù)A,B;(2) 求P{X≤2},P{X>3};(3) 求分布密度f(x).【解】(1)由得(2) (3) f(x
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1